3 resultados para ease of use

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copyright © 2014 International Anesthesia Research Society.BACKGROUND: Goal-directed fluid therapy (GDFT) is associated with improved outcomes after surgery. The esophageal Doppler monitor (EDM) is widely used, but has several limitations. The NICOM, a completely noninvasive cardiac output monitor (Cheetah Medical), may be appropriate for guiding GDFT. No prospective studies have compared the NICOM and the EDM. We hypothesized that the NICOM is not significantly different from the EDM for monitoring during GDFT. METHODS: One hundred adult patients undergoing elective colorectal surgery participated in this study. Patients in phase I (n = 50) had intraoperative GDFT guided by the EDM while the NICOM was connected, and patients in phase II (n = 50) had intraoperative GDFT guided by the NICOM while the EDM was connected. Each patient's stroke volume was optimized using 250- mL colloid boluses. Agreement between the monitors was assessed, and patient outcomes (postoperative pain, nausea, and return of bowel function), complications (renal, pulmonary, infectious, and wound complications), and length of hospital stay (LOS) were compared. RESULTS: Using a 10% increase in stroke volume after fluid challenge, agreement between monitors was 60% at 5 minutes, 61% at 10 minutes, and 66% at 15 minutes, with no significant systematic disagreement (McNemar P > 0.05) at any time point. The EDM had significantly more missing data than the NICOM. No clinically significant differences were found in total LOS or other outcomes. The mean LOS was 6.56 ± 4.32 days in phase I and 6.07 ± 2.85 days in phase II, and 95% confidence limits for the difference were -0.96 to +1.95 days (P = 0.5016). CONCLUSIONS: The NICOM performs similarly to the EDM in guiding GDFT, with no clinically significant differences in outcomes, and offers increased ease of use as well as fewer missing data points. The NICOM may be a viable alternative monitor to guide GDFT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Primary care providers' suboptimal recognition of the severity of chronic kidney disease (CKD) may contribute to untimely referrals of patients with CKD to subspecialty care. It is unknown whether U.S. primary care physicians' use of estimated glomerular filtration rate (eGFR) rather than serum creatinine to estimate CKD severity could improve the timeliness of their subspecialty referral decisions. METHODS: We conducted a cross-sectional study of 154 United States primary care physicians to assess the effect of use of eGFR (versus creatinine) on the timing of their subspecialty referrals. Primary care physicians completed a questionnaire featuring questions regarding a hypothetical White or African American patient with progressing CKD. We asked primary care physicians to identify the serum creatinine and eGFR levels at which they would recommend patients like the hypothetical patient be referred for subspecialty evaluation. We assessed significant improvement in the timing [from eGFR < 30 to ≥ 30 mL/min/1.73m(2)) of their recommended referrals based on their use of creatinine versus eGFR. RESULTS: Primary care physicians recommended subspecialty referrals later (CKD more advanced) when using creatinine versus eGFR to assess kidney function [median eGFR 32 versus 55 mL/min/1.73m(2), p < 0.001]. Forty percent of primary care physicians significantly improved the timing of their referrals when basing their recommendations on eGFR. Improved timing occurred more frequently among primary care physicians practicing in academic (versus non-academic) practices or presented with White (versus African American) hypothetical patients [adjusted percentage(95% CI): 70% (45-87) versus 37% (reference) and 57% (39-73) versus 25% (reference), respectively, both p ≤ 0.01). CONCLUSIONS: Primary care physicians recommended subspecialty referrals earlier when using eGFR (versus creatinine) to assess kidney function. Enhanced use of eGFR by primary care physicians' could lead to more timely subspecialty care and improved clinical outcomes for patients with CKD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Heterocycles are ubiquitous in biologically active natural products and pharmaceuticals. Yet, new syntheses and modifications of N-heterocycles are continually of interest for the purposes of expanding chemical space, finding quicker synthetic routes, better pharmaceuticals, and even new handles for molecular labeling. There are several iterations of molecular labeling; the decision of where to place the label is as important as of which visualization technique to emphasize.

Piperidine and indole are two of the most widely distributed N-heterocycles and thus were targeted for synthesis, functionalization, and labeling. The major functionalization of these scaffolds should include a nitrogen atom, while the inclusion of other groups will expand the utility of the method. Towards this goal, ease of synthesis and elimination of step-wise transformations are of the utmost concern. Here, the concept of electrophilic amination can be utilized as a way of introducing complex secondary and tertiary amines with minimal operations.

Molecular tags should be on or adjacent to an N-heterocycle as they are normally the motifs implicated at the binding site of enzymes and receptors. The labeling techniques should be useful to a chemical biologist, but should also in theory be useful to the medical community. The two types of labeling that are of interest to a chemist and a physician would be positron emission tomography (PET) and magnetic resonance imaging (MRI).

Coincidentally, the 3-positions of both piperidine and indole are historically difficult to access and modify. However, using electrophilic amination techniques, 3-functionalized piperidines can be synthesized in good yields from unsaturated amines. In the same manner, 3-labeled piperidines can be obtained; the piperidines can either be labeled with an azide for biochemical research or an 18F for PET imaging research. The novel electrophiles, N-benzenesulfonyloxyamides, can be reacted with indole in one of two ways: 3-amidation or 1-amidomethylation, depending on the exact reaction conditions. Lastly, a novel, hyperpolarizable 15N2-labeled diazirine has been developed as an exogenous and versatile tag for use in magnetic resonance imaging.