2 resultados para distributed surveillance system

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Little is known about the constraints of optimizing health care for prostate cancer survivors in Alaska primary care. OBJECTIVE: To describe the experiences and attitudes of primary care providers within the Alaska Tribal Health System (ATHS) regarding the care of prostate cancer survivors. DESIGN: In late October 2011, we emailed a 22-item electronic survey to 268 ATHS primary care providers regarding the frequency of Prostate Specific Antigen (PSA) monitoring for a hypothetical prostate cancer survivor; who should be responsible for the patient's life-long prostate cancer surveillance; who should support the patient's emotional and medical needs as a survivor; and providers' level of comfort addressing recurrence monitoring, erectile dysfunction, urinary incontinence, androgen deprivation therapy, and emotional needs. We used simple logistic regression to examine the association between provider characteristics and their responses to the survivorship survey items. RESULTS: Of 221 individuals who were successfully contacted, a total of 114 responded (52% response rate). Most ATHS providers indicated they would order a PSA test every 12 months (69%) and believed that, ideally, the hypothetical patient's primary care provider should be responsible for his life-long prostate cancer surveillance (60%). Most providers reported feeling either "moderately" or "very" comfortable addressing topics such as prostate cancer recurrence (59%), erectile dysfunction (64%), urinary incontinence (63%), and emotional needs (61%) with prostate cancer survivors. These results varied somewhat by provider characteristics including female sex, years in practice, and the number of prostate cancer survivors seen in their practice. CONCLUSIONS: These data suggest that most primary care providers in Alaska are poised to assume the care of prostate cancer survivors locally. However, we also found that large minorities of providers do not feel confident in their ability to manage common issues in prostate cancer survivorship, implying that continued access to specialists with more expert knowledge would be beneficial.