6 resultados para dietary selenium

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium (Se) is a micronutrient necessary for the function of a variety of important enzymes; Se also exhibits a narrow range in concentrations between essentiality and toxicity. Oviparous vertebrates such as birds and fish are especially sensitive to Se toxicity, which causes reproductive impairment and defects in embryo development. Selenium occurs naturally in the Earth's crust, but it can be mobilized by a variety of anthropogenic activities, including agricultural practices, coal burning, and mining.

Mountaintop removal/valley fill (MTR/VF) coal mining is a form of surface mining found throughout central Appalachia in the United States that involves blasting off the tops of mountains to access underlying coal seams. Spoil rock from the mountain is placed into adjacent valleys, forming valley fills, which bury stream headwaters and negatively impact surface water quality. This research focused on the biological impacts of Se leached from MTR/VF coal mining operations located around the Mud River, West Virginia.

In order to assess the status of Se in a lotic (flowing) system such as the Mud River, surface water, insects, and fish samples including creek chub (Semotilus atromaculatus) and green sunfish (Lepomis cyanellus) were collected from a mining impacted site as well as from a reference site not impacted by mining. Analysis of samples from the mined site showed increased conductivity and Se in the surface waters compared to the reference site in addition to increased concentrations of Se in insects and fish. Histological analysis of mined site fish gills showed a lack of normal parasites, suggesting parasite populations may be disrupted due to poor water quality. X-ray absorption near edge spectroscopy techniques were used to determine the speciation of Se in insect and creek chub samples. Insects contained approximately 40-50% inorganic Se (selenate and selenite) and 50-60% organic Se (Se-methionine and Se-cystine) while fish tissues contained lower proportions of inorganic Se than insects, instead having higher proportions of organic Se in the forms of methyl-Se-cysteine, Se-cystine, and Se-methionine.

Otoliths, calcified inner ear structures, were also collected from Mud River creek chubs and green sunfish and analyzed for Se content using laser ablation inductively couple mass spectrometry (LA-ICP-MS). Significant differences were found between the two species of fish, based on the concentrations of otolith Se. Green sunfish otoliths from all sites contained background or low concentrations of otolith Se (< 1 µg/g) that were not significantly different between mined and unmined sites. In contrast creek chub otoliths from the historically mined site contained much higher (≥ 5 µg/g, up to approximately 68 µg/g) concentrations of Se than for the same species in the unmined site or for the green sunfish. Otolith Se concentrations were related to muscle Se concentrations for creek chubs (R2 = 0.54, p = 0.0002 for the last 20% of the otolith Se versus muscle Se) while no relationship was observed for green sunfish.

Additional experiments using biofilms grown in the Mud River showed increased Se in mined site biofilms compared to the reference site. When we fed fathead minnows (Pimephales promelas) on these biofilms in the laboratory they accumulated higher concentrations of Se in liver and ovary tissues compared to fathead minnows fed on reference site biofilms. No differences in Se accumulation were found in muscle from either treatment group. Biofilms were also centrifuged and separated into filamentous green algae and the remaining diatom fraction. The majority of Se was found in the diatom fraction with only about 1/3rd of total biofilm Se concentration present in the filamentous green algae fraction

Finally, zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and L-selenomethionine in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). L-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared to controls. Antioxidant rescue of L-selenomethionime induced deformities was attempted in embryos using N-acetylcysteine (NAC). Pretreatment with NAC significantly reduced deformities in the zebrafish embryos secondarily treated with L-selenomethionine, suggesting that oxidative stress may play a role in Se toxicity. Selenite exposure also induced a 6.6-fold increase in glutathione-S-transferase pi class 2 gene expression, which is involved in xenobiotic transformation. No changes in gene expression were observed for selenate or L-selenomethionine-exposed embryos.

The findings in this dissertation contribute to the understanding of how Se bioaccumulates in a lotic system and is transferred through a simulated foodweb in addition to further exploring oxidative stress as a potential mechanism for Se-induced embryo toxicity. Future studies should continue to pursue the role of oxidative stress and other mechanisms in Se toxicity and the biotransformation of Se in aquatic ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dietary Approaches to Stop Hypertension (DASH) trial showed that a diet rich in fruits, vegetables, low-fat dairy products with reduced total and saturated fat, cholesterol, and sugar-sweetened products effectively lowers blood pressure in individuals with prehypertension and stage I hypertension. Limited evidence is available on the safety and efficacy of the DASH eating pattern in special patient populations that were excluded from the trial. Caution should be exercised before initiating the DASH diet in patients with chronic kidney disease, chronic liver disease, and those who are prescribed renin-angiotensin-aldosterone system antagonist, but these conditions are not strict contraindications to DASH. Modifications to the DASH diet may be necessary to facilitate its use in patients with chronic heart failure, uncontrolled diabetes mellitus type II, lactose intolerance, and celiac disease. In general, the DASH diet can be adopted by most patient populations and initiated simultaneously with medication therapy and other lifestyle interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Although the Dietary Approaches to Stop Hypertension (DASH) diet lowers blood pressure in adults with hypertension, how kidney function impacts this effect is not known. We evaluated whether Estimated Glomerular Filtration Rate (eGFR) modifies the effect of the DASH diet on blood pressure, markers of mineral metabolism, and markers of kidney function. METHODS: Secondary analysis of the DASH-Sodium trial, a multicenter, randomized, controlled human feeding study that evaluated the blood pressure lowering effect of the DASH diet at three levels of sodium intake. Data from 92 participants with pre-hypertension or stage 1 hypertension during the 3450 mg /day sodium diet assignment contributed to this analysis. Stored frozen plasma and urine specimens were used to measure kidney related laboratory outcomes. RESULTS: Effects of the DASH diet on blood pressure, phosphorus, intact parathyroid hormone, creatinine, and albuminuria were not modified by baseline eGFR (mean 84.5 ± 18.0 ml/min/1.73 m(2), range 44.1 to 138.6 ml/min/1.73 m(2)) or the presence of chronic kidney disease (N=13%). CONCLUSIONS: The impact of the DASH diet on blood pressure, markers of mineral metabolism, and markers of kidney function does not appear to be modified by eGFR in this small subset of DASH-Sodium trial participants with relatively preserved kidney function. Whether greater reduction in eGFR modifies the effects of DASH on kidney related measures is yet to be determined. A larger study in individuals with more advanced kidney disease is needed to establish the efficacy and safety of the DASH diet in this patient population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.