7 resultados para diagnostic technique and procedure

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Too little information is available on Sri Lanka’s current capacity to provide community genetic services—antenatal genetic services in particular—to understand whether building that capacity could further improve and reduce disparity in maternal and child health. This qualitative research project seeks to gather information on congenital disorders, routine antenatal care, and the current state of antenatal screening testing services within that routine antenatal to assess the feasibility of and the need for scaling up antenatal genetics services in Sri Lanka. Methods: Nineteen key informant (KI) interviews were conducted with stakeholders in antenatal care and genetic services. Seven focus group discussions were held with a total of 56 Public Health Midwives (PHMs), the health workers responsible for antenatal care at the field level. Transcripts for all interviews and FGDs were analyzed for key themes, and themes were categorized to address the specific aims of the project. Results: Antenatal genetic services play a minor role in antenatal care, with screening and diagnostic procedures available in the private sector and paid for out-of-pocket. KIs and PHMs expect that demand for antenatal genetic services will increase as patients’ purchasing power and knowledge grow but note that prohibitive abortion laws limit the ability of patients to act on test results. Genetic services compete for limited financial and human resources in the free public health system, and inadequate information on the prevalence of congenital disorders limits the ability to understand whether funding for services related to those disorders should be increased. A number of alternatives to scaling up antenatal genetic services within the free health system might be better suited to the Sri Lankan structural and social context. Conclusions: Scaling up antenatal genetic services within the public health system is not feasible in the current financial, legal, and human resource context. Yet current availability and utilization patterns contribute to regional and economic disparities, suggesting that stasis will not bring continued improvements in maternal and child health. More information on the burden of congenital disorders is necessary to fully understand if and how antenatal genetic service availability should be increased in Sri Lanka, but even before that information is gathered, examination of policies for patient referral, termination of pregnancy, and government support for individuals with genetic disease are steps that might bring extend improvements and reduce disparity in maternal and child health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:

Knowing the scope of neurosurgical disease at Mbarara Hospital is critical for infrastructure planning, education and training. In this study, we aim to evaluate the neurosurgical outcomes and identify predictors of mortality in order to potentiate platforms for more effective interventions and inform future research efforts at Mbarara Hospital.

Methods:

This is retrospective chart review including patients of all ages with a neurosurgical disease or injury presenting to Mbarara Regional Referral Hospital (MRRH) between January 2012 to September 2015. Descriptive statistics were presented. A univariate analysis was used to obtain the odds ratios of mortality and 95% confidence intervals. Predictors of mortality were determined using multivariate logistic regression model.

Results:

A total of 1876 charts were reviewed. Of these, 1854 (had complete data and were?) were included in the analysis. The overall mortality rate was 12.75%; the mortality rates among all persons who underwent a neurosurgical procedure was 9.72%, and was 13.68% among those who did not undergo a neurosurgical procedure. Over 50% of patients were between 19 and 40 years old and the majority of were males (76.10%). The overall median length of stay was 5 days. Of all neurosurgical admissions, 87% were trauma patients. In comparison to mild head injury, closed head injury and intracranial hematoma patients were 5 (95% CI: 3.77, 8.26) and 2.5 times (95% CI: 1.64,3.98) more likely to die respectively. Procedure and diagnostic imaging were independent negative predictors of mortality (P <0.05). While age, ICU admission, admission GCS were positive predictors of mortality (P <0.05).

Conclusions:

The majority of hospital admissions were TBI patients, with RTIs being the most common mechanism of injury. Age, ICU admission, admission GCS, diagnostic imaging and undergoing surgery were independent predictors of mortality. Going forward, further exploration of patient characteristics is necessary to fully describe mortality outcomes and implement resource appropriate interventions that ultimately improve morbidity and mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.

The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.

Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.

An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.

The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To use a unique multicomponent administrative data set assembled at a large academic teaching hospital to examine the risk of percutaneous blood and body fluid (BBF) exposures occurring in operating rooms. DESIGN A 10-year retrospective cohort design. SETTING A single large academic teaching hospital. PARTICIPANTS All surgical procedures (n=333,073) performed in 2001-2010 as well as 2,113 reported BBF exposures were analyzed. METHODS Crude exposure rates were calculated; Poisson regression was used to analyze risk factors and account for procedure duration. BBF exposures involving suture needles were examined separately from those involving other device types to examine possible differences in risk factors. RESULTS The overall rate of reported BBF exposures was 6.3 per 1,000 surgical procedures (2.9 per 1,000 surgical hours). BBF exposure rates increased with estimated patient blood loss (17.7 exposures per 1,000 procedures with 501-1,000 cc blood loss and 26.4 exposures per 1,000 procedures with >1,000 cc blood loss), number of personnel working in the surgical field during the procedure (34.4 exposures per 1,000 procedures having ≥15 personnel ever in the field), and procedure duration (14.3 exposures per 1,000 procedures lasting 4 to <6 hours, 27.1 exposures per 1,000 procedures lasting ≥6 hours). Regression results showed associations were generally stronger for suture needle-related exposures. CONCLUSIONS Results largely support other studies found in the literature. However, additional research should investigate differences in risk factors for BBF exposures associated with suture needles and those associated with all other device types. Infect. Control Hosp. Epidemiol. 2015;37(1):80-87.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses dynamic impulse response analysis to investigate the interrelationships among stock price volatility, trading volume, and the leverage effect. Dynamic impulse response analysis is a technique for analyzing the multi-step-ahead characteristics of a nonparametric estimate of the one-step conditional density of a strictly stationary process. The technique is the generalization to a nonlinear process of Sims-style impulse response analysis for linear models. In this paper, we refine the technique and apply it to a long panel of daily observations on the price and trading volume of four stocks actively traded on the NYSE: Boeing, Coca-Cola, IBM, and MMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The diagnosis of Alzheimer's disease (AD) remains difficult. Lack of diagnostic certainty or possible distress related to a positive result from diagnostic testing could limit the application of new testing technologies. The objective of this paper is to quantify respondents' preferences for obtaining AD diagnostic tests and to estimate the perceived value of AD test information. METHODS: Discrete-choice experiment and contingent-valuation questions were administered to respondents in Germany and the United Kingdom. Choice data were analyzed by using random-parameters logit. A probit model characterized respondents who were not willing to take a test. RESULTS: Most respondents indicated a positive value for AD diagnostic test information. Respondents who indicated an interest in testing preferred brain imaging without the use of radioactive markers. German respondents had relatively lower money-equivalent values for test features compared with respondents in the United Kingdom. CONCLUSIONS: Respondents preferred less invasive diagnostic procedures and tests with higher accuracy and expressed a willingness to pay up to €700 to receive a less invasive test with the highest accuracy.