4 resultados para detergent

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The digestibility and passage of an experimental diet was used to compare the digestive physiology of two Propithecus species: P. verreauxi and P. tattersalli. Though both animals have a similar feeding ecology, the captive status of P. verreauxi is considered more stable than that of P. tattersalli. The test diet included a local tree species, Rhus copallina, at 15% of dry matter intake (DMI) and Mazuri Leafeater Primate Diet at 85% of DMI. The chemical composition of the diet (dry matter basis) was 25% crude protein, 34% neutral detergent fiber (NDF), and 22% acid detergent fiber (ADF) with a gross energy of 4.52 kcal/g. After a 6 week acclimation to the experimental diet, animals were placed in research caging. After a 7 day adjustment period, animals were dosed with chromium mordant and Co-EDTA as markers for digesta passage and all feed refusals and feces were collected at timed intervals for 7 days. Digestibility values, similar for both species, were approximately 65% for dry matter, crude protein, and energy, and 40% and 35% respectively, for NDF and ADF. Transit times (17-18.5 hr) and mean retention times (31-34 hr) were not significantly different between species, and there was no difference between the chromium mordant and Co-EDTA. Serum values for glucose, urea, and non-esterified fatty acids (NEFA) were obtained during four different time periods to monitor nutritional status. While there was no change in serum glucose, serum urea increased over time. The NEFAs increased across all four time periods for P. verreauxi and increased for the first three periods then decreased in the last period for P. tattersalli. Results obtained indicate no difference in digestibility nor digesta passage between species, and that both Propithecus species were similar to other post-gastric folivores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G protein-coupled receptor kinase 2 (GRK2) phosphorylates activated G protein-coupled receptors (GPCRs), which ultimately leads to their desensitization and/or downregulation. The enzyme is recruited to the plasma membrane via the interaction of its carboxyl-terminal pleckstrin-homology (PH) domain with the beta and gamma subunits of heterotrimeric G proteins (Gbetagamma). An improved purification scheme for GRK2 has been developed, conditions under which GRK2 forms a complex with Gbeta(1)gamma(2) have been determined and the complex has been crystallized in CHAPS detergent micelles. Crystals of the GRK2-Gbetagamma complex belong to space group C2 and have unit-cell parameters a = 187.0, b = 72.1, c = 122.0 A, beta = 115.2 degrees. A complete data set has been collected to 3.2 A resolution with Cu Kalpha radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorylation of G-protein-coupled receptors plays an important role in regulating their function. In this study the G-protein-coupled receptor phosphatase (GRP) capable of dephosphorylating G-protein-coupled receptor kinase-phosphorylated receptors is described. The GRP activity of bovine brain is a latent oligomeric form of protein phosphatase type 2A (PP-2A) exclusively associated with the particulate fraction. GRP activity is observed only when assayed in the presence of protamine or when phosphatase-containing fractions are subjected to freeze/thaw treatment under reducing conditions. Consistent with its identification as a member of the PP-2A family, the GRP is potently inhibited by okadaic acid but not by I-2, the specific inhibitor of protein phosphatase type 1. Solubilization of the membrane-associated GRP followed by gel filtration in the absence of detergent yields a 150-kDa peak of latent receptor phosphatase activity. Western blot analysis of this phosphatase reveals a likely subunit composition of AB alpha C. PP-2A of this subunit composition has previously been characterized as a soluble enzyme, yet negligible soluble GRP activity was observed. The subcellular distribution and substrate specificity of the GRP suggests significant differences between it and previously characterized forms of PP-2A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this research is to identify the trafficking patterns that direct ribosomes to the endoplasmic reticulum (ER). It is widely believed that the SRP pathway is the only mechanism that cells use to localize mRNA and ribosomes to the ER, but this has been found not to be a sufficient explanation for the patterns of RNA localization in cells, namely that non-signal sequence-containing mRNA are translated on the ER and that ribosomes retain their membrane association after translation termination. First, a summary of the history of the field is presented to provide context for the key, unanswered questions in the field. Then, experiments employing [32Pi] pulse-chase labeling of HeLa cells over a time course to follow nascent ribosome trafficking are presented. The purpose of the cell labeling was to track rRNA processing and assembly into nascent ribosomes, followed by their export into the cytoplasm and recruitment into active polysomes. A detergent-based cell fractionation procedure was also utilized to separate the cytosol and ER compartments in order to observe ribosomes on their path as they exit the nucleus and either localize to the ER or cytosolic cellular compartment. Through this method, it was seen that ribosomes appear in both compartments at the same time, suggesting a mechanism may be occurring in addition to SRP-dependent ribosome trafficking. This research provides an understanding toward a mechanism that is not currently known, but will one day more fully explain the patterns of ribosomal localization.