2 resultados para decoupling and matching network

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Involuntary episodic memories are memories that come into consciousness without preceding retrieval effort. These memories are commonplace and are relevant to multiple mental disorders. However, they are vastly understudied. We use a novel paradigm to elicit involuntary memories in the laboratory so that we can study their neural basis. In session one, an encoding session, sounds are presented with picture pairs or alone. In session two, in the scanner, sounds-picture pairs and unpaired sounds are reencoded. Immediately following, participants are split into two groups: a voluntary and an involuntary group. Both groups perform a sound localization task in which they hear the sounds and indicate the side from which they are coming. The voluntary group additionally tries to remember the pictures that were paired with the sounds. Looking at neural activity, we find a main effect of condition (paired vs. unpaired sounds) showing similar activity in both groups for voluntary and involuntary memories in regions typically associated with retrieval. There is also a main effect of group (voluntary vs. involuntary) in the dorsolateral prefrontal cortex, a region typically associated with cognitive control. Turning to connectivity similarities and differences between groups again, there is a main effect of condition showing paired > unpaired sounds are associated with a recollection network. In addition, three group differences were found: (1) increased connectivity between the pulvinar nucleus of the thalamus and the recollection network for the voluntary group, (2) a higher association between the voluntary group and a network that includes regions typically found in frontoparietal and cingulo-opercular networks, and (3) shorter path length for about half of the nodes in these networks for the voluntary group. Finally, we use the same paradigm to compare involuntary memories in people with posttraumatic stress disorder (PTSD) to trauma-controls. This study also included the addition of emotional pictures. There were two main findings. (1) A similar pattern of activity was found for paired > unpaired sounds for both groups but this activity was delayed in the PTSD group. (2) A similar pattern of activity was found for high > low emotion stimuli but it occurred early in the PTSD group compared to the control group. Our results suggest that involuntary and voluntary memories share the same neural representation but that voluntary memories are associated with additional cognitive control processes. They also suggest that disorders associated with cognitive deficits, like PTSD, can affect the processing of involuntary memories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of next-generation sequencing, now nearing a decade in age, has enabled, among other capabilities, measurement of genome-wide sequence features at unprecedented scale and resolution.

In this dissertation, I describe work to understand the genetic underpinnings of non-Hodgkin’s lymphoma through exploration of the epigenetics of its cell of origin, initial characterization and interpretation of driver mutations, and finally, a larger-scale, population-level study that incorporates mutation interpretation with clinical outcome.

In the first research chapter, I describe genomic characteristics of lymphomas through the lens of their cells of origin. Just as many other cancers, such as breast cancer or lung cancer, are categorized based on their cell of origin, lymphoma subtypes can be examined through the context of their normal B Cells of origin, Naïve, Germinal Center, and post-Germinal Center. By applying integrative analysis of the epigenetics of normal B Cells of origin through chromatin-immunoprecipitation sequencing, we find that differences in normal B Cell subtypes are reflected in the mutational landscapes of the cancers that arise from them, namely Mantle Cell, Burkitt, and Diffuse Large B-Cell Lymphoma.

In the next research chapter, I describe our first endeavor into understanding the genetic heterogeneity of Diffuse Large B Cell Lymphoma, the most common form of non-Hodgkin’s lymphoma, which affects 100,000 patients in the world. Through whole-genome sequencing of 1 case as well as whole-exome sequencing of 94 cases, we characterize the most recurrent genetic features of DLBCL and lay the groundwork for a larger study.

In the last research chapter, I describe work to characterize and interpret the whole exomes of 1001 cases of DLBCL in the largest single-cancer study to date. This highly-powered study enabled sub-gene, gene-level, and gene-network level understanding of driver mutations within DLBCL. Moreover, matched genomic and clinical data enabled the connection of these driver mutations to clinical features such as treatment response or overall survival. As sequencing costs continue to drop, whole-exome sequencing will become a routine clinical assay, and another diagnostic dimension in addition to existing methods such as histology. However, to unlock the full utility of sequencing data, we must be able to interpret it. This study undertakes a first step in developing the understanding necessary to uncover the genomic signals of DLBCL hidden within its exomes. However, beyond the scope of this one disease, the experimental and analytical methods can be readily applied to other cancer sequencing studies.

Thus, this dissertation leverages next-generation sequencing analysis to understand the genetic underpinnings of lymphoma, both by examining its normal cells of origin as well as through a large-scale study to sensitively identify recurrently mutated genes and their relationship to clinical outcome.