4 resultados para decomposition of a support
em Duke University
Resumo:
The authors of this study evaluated a structured 10-session psychosocial support group intervention for newly HIV-diagnosed pregnant South African women. Participants were expected to display increases in HIV disclosure, self-esteem, active coping and positive social support, and decreases in depression, avoidant coping, and negative social support. Three hundred sixty-one pregnant HIV-infected women were recruited from four antenatal clinics in Tshwane townships from April 2005 to September 2006. Using a quasi-experimental design, assessments were conducted at baseline and two and eight months post-intervention. A series of random effects regression analyses were conducted, with the three assessment points treated as a random effect of time. At both follow-ups, the rate of disclosure in the intervention group was significantly higher than that of the comparison group (p<0.001). Compared to the comparison group at the first follow-up, the intervention group displayed higher levels of active coping (t=2.68, p<0.05) and lower levels of avoidant coping (t=-2.02, p<0.05), and those who attended at least half of the intervention sessions exhibited improved self-esteem (t=2.11, p<0.05). Group interventions tailored for newly HIV positive pregnant women, implemented in resource-limited settings, may accelerate the process of adjusting to one's HIV status, but may not have sustainable benefits over time.
Resumo:
The national shortage of helium-3 has made it critical to develop an alternative to helium-3 neutron detectors. Boron-10, if it could be produced in macroscopic alpha-rhombohedral crystalline form, would be a viable alternative to helium-3. This work has determined the critical parameters needed for the preparation of alpha-rhombohedral boron by the pyrolytic decomposition of boron tribromide on tantalum wire. The primary parameters that must be met are wire temperature and feedstock purity. The minimum purity level for boron tribromide was determined to be 99.999% and it has been found that alpha-rhombohedral boron cannot be produced using 99.99% boron tribromide. The decomposition temperature was experimentally tested between 830°C and 1000°C. Alpha-rhombohedral boron was found at temperatures between 950°C and 1000°C using 99.999% pure boron tribromide.
Resumo:
Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?
The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.
The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.
The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.