2 resultados para data quality
em Duke University
Resumo:
BACKGROUND: Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. METHODS AND PRINCIPAL FINDINGS: The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. CONCLUSIONS: Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks.
Resumo:
BACKGROUND: Road traffic injuries (RTIs) are a growing but neglected global health crisis, requiring effective prevention to promote sustainable safety. Low- and middle-income countries (LMICs) share a disproportionately high burden with 90% of the world's road traffic deaths, and where RTIs are escalating due to rapid urbanization and motorization. Although several studies have assessed the effectiveness of a specific intervention, no systematic reviews have been conducted summarizing the effectiveness of RTI prevention initiatives specifically performed in LMIC settings; this study will help fill this gap. METHODS: In accordance with PRISMA guidelines we searched the electronic databases MEDLINE, EMBASE, Scopus, Web of Science, TRID, Lilacs, Scielo and Global Health. Articles were eligible if they considered RTI prevention in LMICs by evaluating a prevention-related intervention with outcome measures of crash, RTI, or death. In addition, a reference and citation analysis was conducted as well as a data quality assessment. A qualitative metasummary approach was used for data analysis and effect sizes were calculated to quantify the magnitude of emerging themes. RESULTS: Of the 8560 articles from the literature search, 18 articles from 11 LMICs fit the eligibility and inclusion criteria. Of these studies, four were from Sub-Saharan Africa, ten from Latin America and the Caribbean, one from the Middle East, and three from Asia. Half of the studies focused specifically on legislation, while the others focused on speed control measures, educational interventions, enforcement, road improvement, community programs, or a multifaceted intervention. CONCLUSION: Legislation was the most common intervention evaluated with the best outcomes when combined with strong enforcement initiatives or as part of a multifaceted approach. Because speed control is crucial to crash and injury prevention, road improvement interventions in LMIC settings should carefully consider how the impact of improvements will affect speed and traffic flow. Further road traffic injury prevention interventions should be performed in LMICs with patient-centered outcomes in order to guide injury prevention in these complex settings.