3 resultados para cytometric bead array
em Duke University
Resumo:
This thesis demonstrates a new way to achieve sparse biological sample detection, which uses magnetic bead manipulation on a digital microfluidic device. Sparse sample detection was made possible through two steps: sparse sample capture and fluorescent signal detection. For the first step, the immunological reaction between antibody and antigen enables the binding between target cells and antibody-‐‑ coated magnetic beads, hence achieving sample capture. For the second step, fluorescent detection is achieved via fluorescent signal measurement and magnetic bead manipulation. In those two steps, a total of three functions need to work together, namely magnetic beads manipulation, fluorescent signal measurement and immunological binding. The first function is magnetic bead manipulation, and it uses the structure of current-‐‑carrying wires embedded in the actuation electrode of an electrowetting-‐‑on-‐‑dielectric (EWD) device. The current wire structure serves as a microelectromagnet, which is capable of segregating and separating magnetic beads. The device can achieve high segregation efficiency when the wire spacing is 50µμm, and it is also capable of separating two kinds of magnetic beads within a 65µμm distance. The device ensures that the magnetic bead manipulation and the EWD function can be operated simultaneously without introducing additional steps in the fabrication process. Half circle shaped current wires were designed in later devices to concentrate magnetic beads in order to increase the SNR of sample detection. The second function is immunological binding. Immunological reaction kits were selected in order to ensure the compatibility of target cells, magnetic bead function and EWD function. The magnetic bead choice ensures the binding efficiency and survivability of target cells. The magnetic bead selection and binding mechanism used in this work can be applied to a wide variety of samples with a simple switch of the type of antibody. The last function is fluorescent measurement. Fluorescent measurement of sparse samples is made possible of using fluorescent stains and a method to increase SNR. The improved SNR is achieved by target cell concentration and reduced sensing area. Theoretical limitations of the entire sparse sample detection system is as low as 1 Colony Forming Unit/mL (CFU/mL).
Resumo:
The genomes of many strains of baker’s yeast, Saccharomyces cerevisiae, contain multiple repeats of the copper-binding protein Cup1. Cup1 is a member of the metallothionein family, and is found in a tandem array on chromosome VIII. In this thesis, I describe studies that characterized these tandem arrays and their mechanism of formation across diverse strains of yeast. I show that CUP1 arrays are an illuminating model system for observing recombination in eukaryotes, and describe insights derived from these observations.
In our first study, we analyzed 101 natural isolates of S. cerevisiae in order to examine the diversity of CUP1-containing repeats across different strains. We identified five distinct classes of repeats that contain CUP1. We also showed that some strains have only a single copy of CUP1. By comparing the sequences of all the strains, we were able to elucidate the mechanism of formation of the CUP1 tandem arrays, which involved unequal non-homologous recombination events starting from a strain that had only a single CUP1 gene. Our observation of CUP1 repeat formation allows more general insights about the formation of tandem repeats from single-copy genes in eukaryotes, which is one of the most important mechanisms by which organisms evolve.
In our second study, we delved deeper into our mechanistic investigations by measuring the relative rates of inter-homolog and intra-/inter-sister chromatid recombination in CUP1 tandem arrays. We used a diploid strain that is heterozygous both for insertion of a selectable marker (URA3) inside the tandem array, and also for markers at either end of the array. The intra-/inter-sister chromatid recombination rate turned out to be more than ten-fold greater than the inter-homolog rate. Moreover, we found that loss of the proteins Rad51 and Rad52, which are required for most inter-homolog recombination, did not greatly reduce recombination in the CUP1 tandem repeats. Additionally, we investigated the effects of elevated copper levels on the rate of each type of recombination at the CUP1 locus. Both types of recombination are increased at high concentrations of copper (as is known to be the case for CUP1 transcription). Furthermore, the inter-homolog recombination rate at the CUP1 locus is higher than the average over the genome during mitosis, but is lower than the average during meiosis.
The research described in Chapter 2 is published in 2014.