2 resultados para cross-curriculum testing
em Duke University
Resumo:
Testing for differences within data sets is an important issue across various applications. Our work is primarily motivated by the analysis of microbiomial composition, which has been increasingly relevant and important with the rise of DNA sequencing. We first review classical frequentist tests that are commonly used in tackling such problems. We then propose a Bayesian Dirichlet-multinomial framework for modeling the metagenomic data and for testing underlying differences between the samples. A parametric Dirichlet-multinomial model uses an intuitive hierarchical structure that allows for flexibility in characterizing both the within-group variation and the cross-group difference and provides very interpretable parameters. A computational method for evaluating the marginal likelihoods under the null and alternative hypotheses is also given. Through simulations, we show that our Bayesian model performs competitively against frequentist counterparts. We illustrate the method through analyzing metagenomic applications using the Human Microbiome Project data.
Resumo:
HIV testing has been promoted as a key HIV prevention strategy in low-resource settings, despite studies showing variable impact on risk behavior. We sought to examine rates of HIV testing and the association between testing and sexual risk behaviors in Kisumu, Kenya. Participants were interviewed about HIV testing and sexual risk behaviors. They then underwent HIV serologic testing. We found that 47% of women and 36% of men reported prior testing. Two-thirds of participants who tested HIV-positive in this study reported no prior HIV test. Women who had undergone recent testing were less likely to report high-risk behaviors than women who had never been tested; this was not seen among men. Although rates of HIV testing were higher than seen in previous studies, the majority of HIV-infected people were unaware of their status. Efforts should be made to increase HIV testing among this population.