4 resultados para continuous disclosure

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract

Continuous variable is one of the major data types collected by the survey organizations. It can be incomplete such that the data collectors need to fill in the missingness. Or, it can contain sensitive information which needs protection from re-identification. One of the approaches to protect continuous microdata is to sum them up according to different cells of features. In this thesis, I represents novel methods of multiple imputation (MI) that can be applied to impute missing values and synthesize confidential values for continuous and magnitude data.

The first method is for limiting the disclosure risk of the continuous microdata whose marginal sums are fixed. The motivation for developing such a method comes from the magnitude tables of non-negative integer values in economic surveys. I present approaches based on a mixture of Poisson distributions to describe the multivariate distribution so that the marginals of the synthetic data are guaranteed to sum to the original totals. At the same time, I present methods for assessing disclosure risks in releasing such synthetic magnitude microdata. The illustration on a survey of manufacturing establishments shows that the disclosure risks are low while the information loss is acceptable.

The second method is for releasing synthetic continuous micro data by a nonstandard MI method. Traditionally, MI fits a model on the confidential values and then generates multiple synthetic datasets from this model. Its disclosure risk tends to be high, especially when the original data contain extreme values. I present a nonstandard MI approach conditioned on the protective intervals. Its basic idea is to estimate the model parameters from these intervals rather than the confidential values. The encouraging results of simple simulation studies suggest the potential of this new approach in limiting the posterior disclosure risk.

The third method is for imputing missing values in continuous and categorical variables. It is extended from a hierarchically coupled mixture model with local dependence. However, the new method separates the variables into non-focused (e.g., almost-fully-observed) and focused (e.g., missing-a-lot) ones. The sub-model structure of focused variables is more complex than that of non-focused ones. At the same time, their cluster indicators are linked together by tensor factorization and the focused continuous variables depend locally on non-focused values. The model properties suggest that moving the strongly associated non-focused variables to the side of focused ones can help to improve estimation accuracy, which is examined by several simulation studies. And this method is applied to data from the American Community Survey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes a class of common-component allocation rules, termed no-holdback (NHB) rules, in continuous-review assemble-to-order (ATO) systems with positive lead times. The inventory of each component is replenished following an independent base-stock policy. In contrast to the usually assumed first-come-first-served (FCFS) component allocation rule in the literature, an NHB rule allocates a component to a product demand only if it will yield immediate fulfillment of that demand. We identify metrics as well as cost and product structures under which NHB rules outperform all other component allocation rules. For systems with certain product structures, we obtain key performance expressions and compare them to those under FCFS. For general product structures, we present performance bounds and approximations. Finally, we discuss the applicability of these results to more general ATO systems. © 2010 INFORMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate a carbon mitigation cost curve for the U.S. commercial sector based on econometric estimation of the responsiveness of fuel demand and equipment choices to energy price changes. The model econometrically estimates fuel demand conditional on fuel choice, which is characterized by a multinomial logit model. Separate estimation of end uses (e.g., heating, cooking) using the U.S. Commercial Buildings Energy Consumption Survey allows for exceptionally detailed estimation of price responsiveness disaggregated by end use and fuel type. We then construct aggregate long-run elasticities, by fuel type, through a series of simulations; own-price elasticities range from -0.9 for district heat services to -2.9 for fuel oil. The simulations form the basis of a marginal cost curve for carbon mitigation, which suggests that a price of $20 per ton of carbon would result in an 8% reduction in commercial carbon emissions, and a price of $100 per ton would result in a 28% reduction. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical research project starts with identifying the optimal research question, one that is ethical, impactful, feasible, scientifically sound, novel, relevant, and interesting. The project continues with the design of the study to answer the research question. Such design should be consistent with ethical and methodological principles, and make optimal use of resources in order to have the best chances of identifying a meaningful answer to the research question. Physicians and other healthcare providers are optimally positioned to identify meaningful research questions the answer to which could make significant impact on healthcare delivery. The typical medical education curriculum, however, lacks solid training in clinical research. We propose CREATE (Continuous Research Education And Training Exercises) as a peer- and group-based, interactive, analytical, customized, and accrediting program with didactic, training, mentoring, administrative, and professional support to enhance clinical research knowledge and skills among healthcare professionals, promote the generation of original research projects, increase the chances of their successful completion and potential for meaningful impact. The key features of the program are successive intra- and inter-group discussions and confrontational thematic challenges among participating peers aimed at capitalizing on the groups' collective knowledge, experience and skills, and combined intellectual processing capabilities to optimize choice of research project elements and stakeholder decision-making.