5 resultados para concentration quenching model
em Duke University
Resumo:
Quantitative models are required to engineer biomaterials with environmentally responsive properties. With this goal in mind, we developed a model that describes the pH-dependent phase behavior of a class of stimulus responsive elastin-like polypeptides (ELPs) that undergo reversible phase separation in response to their solution environment. Under isothermal conditions, charged ELPs can undergo phase separation when their charge is neutralized. Optimization of this behavior has been challenging because the pH at which they phase separate, pHt, depends on their composition, molecular weight, concentration, and temperature. To address this problem, we developed a quantitative model to describe the phase behavior of charged ELPs that uses the Henderson-Hasselbalch relationship to describe the effect of side-chain ionization on the phase-transition temperature of an ELP. The model was validated with pH-responsive ELPs that contained either acidic (Glu) or basic (His) residues. The phase separation of both ELPs fit this model across a range of pH. These results have important implications for applications of pH-responsive ELPs because they provide a quantitative model for the rational design of pH-responsive polypeptides whose transition can be triggered at a specified pH.
Resumo:
We developed a ratiometric method capable of estimating total hemoglobin concentration from optically measured diffuse reflectance spectra. The three isosbestic wavelength ratio pairs that best correlated to total hemoglobin concentration independent of saturation and scattering were 545/390, 452/390, and 529/390 nm. These wavelength pairs were selected using forward Monte Carlo simulations which were used to extract hemoglobin concentration from experimental phantom measurements. Linear regression coefficients from the simulated data were directly applied to the phantom data, by calibrating for instrument throughput using a single phantom. Phantoms with variable scattering and hemoglobin saturation were tested with two different instruments, and the average percent errors between the expected and ratiometrically-extracted hemoglobin concentration were as low as 6.3%. A correlation of r = 0.88 between hemoglobin concentration extracted using the 529/390 nm isosbestic ratio and a scalable inverse Monte Carlo model was achieved for in vivo dysplastic cervical measurements (hemoglobin concentrations have been shown to be diagnostic for the detection of cervical pre-cancer by our group). These results indicate that use of such a simple ratiometric method has the potential to be used in clinical applications where tissue hemoglobin concentrations need to be rapidly quantified in vivo.
Resumo:
INTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.
Resumo:
We analyzed projections of current and future ambient temperatures along the eastern United States in relationship to the thermal tolerance of harbor seals in air. Using the earth systems model (HadGEM2-ES) and representative concentration pathways (RCPs) 4.5 and 8.5, which are indicative of two different atmospheric CO2 concentrations, we were able to examine possible shifts in distribution based on three metrics: current preferences, the thermal limit of juveniles, and the thermal limits of adults. Our analysis focused on average ambient temperatures because harbor seals are least effective at regulating their body temperature in air, making them most susceptible to rising air temperatures in the coming years. Our study focused on the months of May, June, and August from 2041-2060 (2050) and 2061-2080 (2070) as these are the historic months in which harbor seals are known to annually come ashore to pup, breed, and molt. May, June, and August are also some of the warmest months of the year. We found that breeding colonies along the eastern United States will be limited by the thermal tolerance of juvenile harbor seals in air, while their foraging range will extend as far south as the thermal tolerance of adult harbor seals in air. Our analysis revealed that in 2070, harbor seal pups should be absent from the United States coastline nearing the end of the summer due to exceptionally high air temperatures.
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.