4 resultados para computing systems design
em Duke University
Resumo:
This dissertation shows the use of Constructal law to find the relation between the morphing of the system configuration and the improvements in the global performance of the complex flow system. It shows that the better features of both flow and heat transfer architecture can be found and predicted by using the constructal law in energy systems. Chapter 2 shows the effect of flow configuration on the heat transfer performance of a spiral shaped pipe embedded in a cylindrical conducting volume. Several configurations were considered. The optimal spacings between the spiral turns and spire planes exist, such that the volumetric heat transfer rate is maximal. The optimized features of the heat transfer architecture are robust. Chapter 3 shows the heat transfer performance of a helically shaped pipe embedded in a cylindrical conducting volume. It shows that the optimized features of the heat transfer architecture are robust with respect to changes in several physical parameters. Chapter 4 reports analytically the formulas for effective permeability in several configurations of fissured systems, using the closed-form description of tree networks designed to provide flow access. The permeability formulas do not vary much from one tree design to the next, suggesting that similar formulas may apply to naturally fissured porous media with unknown precise details, which occur in natural reservoirs. Chapter 5 illustrates a counterflow heat exchanger consists of two plenums with a core. The results show that the overall flow and thermal resistance are lowest when the core is absent. Overall, the constructal design governs the evolution of flow configuration in nature and energy systems.
Resumo:
This dissertation documents the results of a theoretical and numerical study of time dependent storage of energy by melting a phase change material. The heating is provided along invading lines, which change from single-line invasion to tree-shaped invasion. Chapter 2 identifies the special design feature of distributing energy storage in time-dependent fashion on a territory, when the energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The challenge in this chapter is to determine the architecture of distributed energy storage. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to ‘invade’ the area is cumulative (the sum of the storage times required at each storage site), and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Chapter 3 shows theoretically that the melting process consists of two phases: “invasion” thermal diffusion along the invading line, which is followed by “consolidation” as heat diffuses perpendicularly to the invading line. This chapter also reports the duration of both phases and the evolution of the melt layer around the invading line during the two-dimensional and three-dimensional invasion. It also shows that the amount of melted material increases in time according to a curve shaped as an S. These theoretical predictions are validated by means of numerical simulations in chapter 4. This chapter also shows that the heat transfer rate density increases (i.e., the S curve becomes steeper) as the complexity and number of degrees of freedom of the structure are increased, in accord with the constructal law. The optimal geometric features of the tree structure are detailed in this chapter. Chapter 5 documents a numerical study of time-dependent melting where the heat transfer is convection dominated, unlike in chapter 3 and 4 where the melting is ruled by pure conduction. In accord with constructal design, the search is for effective heat-flow architectures. The volume-constrained improvement of the designs for heat flow begins with assuming the simplest structure, where a single line serves as heat source. Next, the heat source is endowed with freedom to change its shape as it grows. The objective of the numerical simulations is to discover the geometric features that lead to the fastest melting process. The results show that the heat transfer rate density increases as the complexity and number of degrees of freedom of the structure are increased. Furthermore, the angles between heat invasion lines have a minor effect on the global performance compared to other degrees of freedom: number of branching levels, stem length, and branch lengths. The effect of natural convection in the melt zone is documented.
Resumo:
Distributed Computing frameworks belong to a class of programming models that allow developers to
launch workloads on large clusters of machines. Due to the dramatic increase in the volume of
data gathered by ubiquitous computing devices, data analytic workloads have become a common
case among distributed computing applications, making Data Science an entire field of
Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,
a sequence of operations they wish to apply on this dataset, and some constraint they may have
related to their work (performances, QoS, budget, etc). However, it is actually extremely
difficult, without domain expertise, to perform data science. One need to select the right amount
and type of resources, pick up a framework, and configure it. Also, users are often running their
application in shared environments, ruled by schedulers expecting them to specify precisely their resource
needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and
profiling are hard, high dimensional problems that block users from making the right
configuration choices and determining the right amount of resources they need. Paradoxically, the
system is gathering a large amount of monitoring data at runtime, which remains unused.
In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit
monitoring data to learn about workloads, and process user requests into a tailored execution
context. In this work, we study different techniques that have been used to make steps toward
such system awareness, and explore a new way to do so by implementing machine learning
techniques to recommend a specific subset of system configurations for Apache Spark applications.
Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight
the complexity in choosing the best one for a given workload.
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.