2 resultados para computational material failure

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.

We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.

We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.

The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.

Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.

The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.

The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.

We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.

Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.