5 resultados para cluster feature
em Duke University
Resumo:
Predicting from first-principles calculations whether mixed metallic elements phase-separate or form ordered structures is a major challenge of current materials research. It can be partially addressed in cases where experiments suggest the underlying lattice is conserved, using cluster expansion (CE) and a variety of exhaustive evaluation or genetic search algorithms. Evolutionary algorithms have been recently introduced to search for stable off-lattice structures at fixed mixture compositions. The general off-lattice problem is still unsolved. We present an integrated approach of CE and high-throughput ab initio calculations (HT) applicable to the full range of compositions in binary systems where the constituent elements or the intermediate ordered structures have different lattice types. The HT method replaces the search algorithms by direct calculation of a moderate number of naturally occurring prototypes representing all crystal systems and guides CE calculations of derivative structures. This synergy achieves the precision of the CE and the guiding strengths of the HT. Its application to poorly characterized binary Hf systems, believed to be phase-separating, defines three classes of alloys where CE and HT complement each other to uncover new ordered structures.
Resumo:
BACKGROUND: Many patients with diabetes have poor blood pressure (BP) control. Pharmacological therapy is the cornerstone of effective BP treatment, yet there are high rates both of poor medication adherence and failure to intensify medications. Successful medication management requires an effective partnership between providers who initiate and increase doses of effective medications and patients who adhere to the regimen. METHODS: In this cluster-randomized controlled effectiveness study, primary care teams within sites were randomized to a program led by a clinical pharmacist trained in motivational interviewing-based behavioral counseling approaches and authorized to make BP medication changes or to usual care. This study involved the collection of data during a 14-month intervention period in three Department of Veterans Affairs facilities and two Kaiser Permanente Northern California facilities. The clinical pharmacist was supported by clinical information systems that enabled proactive identification of, and outreach to, eligible patients identified on the basis of poor BP control and either medication refill gaps or lack of recent medication intensification. The primary outcome is the relative change in systolic blood pressure (SBP) measurements over time. Secondary outcomes are changes in Hemoglobin A1c, low-density lipoprotein cholesterol (LDL), medication adherence determined from pharmacy refill data, and medication intensification rates. DISCUSSION: Integration of the three intervention elements--proactive identification, adherence counseling and medication intensification--is essential to achieve optimal levels of control for high-risk patients. Testing the effectiveness of this intervention at the team level allows us to study the program as it would typically be implemented within a clinic setting, including how it integrates with other elements of care. TRIAL REGISTRATION: The ClinicalTrials.gov registration number is NCT00495794.
Resumo:
Although many feature selection methods for classification have been developed, there is a need to identify genes in high-dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore, it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis.Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information available from microarray data with survival outcomes.
Resumo:
Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day.