10 resultados para climate policy

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The approach used to model technological change in a climate policy model is a critical determinant of its results in terms of the time path of CO2 prices and costs required to achieve various emission reduction goals. We provide an overview of the different approaches used in the literature, with an emphasis on recent developments regarding endogenous technological change, research and development, and learning. Detailed examination sheds light on the salient features of each approach, including strengths, limitations, and policy implications. Key issues include proper accounting for the opportunity costs of climate-related knowledge generation, treatment of knowledge spillovers and appropriability, and the empirical basis for parameterizing technological relationships. No single approach appears to dominate on all these dimensions, and different approaches may be preferred depending on the purpose of the analysis, be it positive or normative. © 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides an exhaustive review of critical issues in the design of climate mitigation policy by pulling together key findings and controversies from diverse literatures on mitigation costs, damage valuation, policy instrument choice, technological innovation, and international climate policy. We begin with the broadest issue of how high assessments suggest the near and medium term price on greenhouse gases would need to be, both under cost-effective stabilization of global climate and under net benefit maximization or Pigouvian emissions pricing. The remainder of the paper focuses on the appropriate scope of regulation, issues in policy instrument choice, complementary technology policy, and international policy architectures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The environment affects our health, livelihoods, and the social and political institutions within which we interact. Indeed, nearly a quarter of the global disease burden is attributed to environmental factors, and many of these factors are exacerbated by global climate change. Thus, the central research question of this dissertation is: How do people cope with and adapt to uncertainty, complexity, and change of environmental and health conditions? Specifically, I ask how institutional factors, risk aversion, and behaviors affect environmental health outcomes. I further assess the role of social capital in climate adaptation, and specifically compare individual and collective adaptation. I then analyze how policy develops accounting for both adaptation to the effects of climate and mitigation of climate-changing emissions. In order to empirically test the relationships between these variables at multiple levels, I combine multiple methods, including semi-structured interviews, surveys, and field experiments, along with health and water quality data. This dissertation uses the case of Ethiopia, Africa’s second-most populous nation, which has a large rural population and is considered very vulnerable to climate change. My fieldwork included interviews and institutional data collection at the national level, and a three-year study (2012-2014) of approximately 400 households in 20 villages in the Ethiopian Rift Valley. I evaluate the theoretical relationships between households, communities, and government in the process of adaptation to environmental stresses. Through my analyses, I demonstrate that water source choice varies by individual risk aversion and institutional context, which ultimately has implications for environmental health outcomes. I show that qualitative measures of trust predict cooperation in adaptation, consistent with social capital theory, but that measures of trust are negatively related with private adaptation by the individual. Finally, I describe how Ethiopia had some unique characteristics, significantly reinforced by international actors, that led to the development of an extensive climate policy, and yet with some challenges remaining for implementation. These results suggest a potential for adaptation through the interactions among individuals, communities, and government in the search for transformative processes when confronting environmental threats and climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent efforts to endogenize technological change in climate policy models demonstrate the importance of accounting for the opportunity cost of climate R&D investments. Because the social returns to R&D investments are typically higher than the social returns to other types of investment, any new climate mitigation R&D that comes at the expense of other R&D investment may dampen the overall gains from induced technological change. Unfortunately, there has been little empirical work to guide modelers as to the potential magnitude of such crowding out effects. This paper considers both the private and social opportunity costs of climate R&D. Addressing private costs, we ask whether an increase in climate R&D represents new R&D spending, or whether some (or all) of the additional climate R&D comes at the expense of other R&D. Addressing social costs, we use patent citations to compare the social value of alternative energy research to other types of R&D that may be crowded out. Beginning at the industry level, we find no evidence of crowding out across sectors-that is, increases in energy R&D do not draw R&D resources away from sectors that do not perform R&D. Given this, we proceed with a detailed look at alternative energy R&D. Linking patent data and financial data by firm, we ask whether an increase in alternative energy patents leads to a decrease in other types of patenting activity. While we find that increases in alternative energy patents do result in fewer patents of other types, the evidence suggests that this is due to profit-maximizing changes in research effort, rather than financial constraints that limit the total amount of R&D possible. Finally, we use patent citation data to compare the social value of alternative energy patents to other patents by these firms. Alternative energy patents are cited more frequently, and by a wider range of other technologies, than other patents by these firms, suggesting that their social value is higher. © 2011 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate that when the future path of the discount rate is uncertain and highly correlated, the distant future should be discounted at significantly lower rates than suggested by the current rate. We then use two centuries of US interest rate data to quantify this effect. Using both random walk and mean-reverting models, we compute the "certainty-equivalent rate" that summarizes the effect of uncertainty and measures the appropriate forward rate of discount in the future. Under the random walk model we find that the certainty-equivalent rate falls continuously from 4% to 2% after 100 years, 1% after 200 years, and 0.5% after 300 years. At horizons of 400 years, the discounted value increases by a factor of over 40,000 relative to conventional discounting. Applied to climate change mitigation, we find that incorporating discount rate uncertainty almost doubles the expected present value of mitigation benefits. © 2003 Elsevier Science (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large portion of foreign assistance for climate change mitigation in developing countries is directed to clean energy facilities. To support international mitigation goals, however, donors must make investments that have effects beyond individual facilities. They must reduce barriers to private-sector investment by generating information for developers, improving relevant infrastructure, or changing policies. We examine whether donor agencies target financing for commercial-scale wind and solar facilities to countries where private investment in clean energy is limited and whether donor investments lead to more private investments. On average, we find no positive evidence for these patterns of targeting and impact. Coupled with model results that show feed-in tariffs increase private investment, we argue that donor agencies should reallocate resources to improve policies that promote private investment in developing countries, rather than finance individual clean energy facilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assess different policies for reducing carbon dioxide emissions and promoting innovation and diffusion of renewable energy. We evaluate the relative performance of policies according to incentives provided for emissions reduction, efficiency, and other outcomes. We also assess how the nature of technological progress through learning and research and development (R&D), and the degree of knowledge spillovers, affects the desirability of different policies. Due to knowledge spillovers, optimal policy involves a portfolio of different instruments targeted at emissions, learning, and R&D. Although the relative cost of individual policies in achieving reductions depends on parameter values and the emissions target, in a numerical application to the U.S. electricity sector, the ranking is roughly as follows: (1) emissions price, (2) emissions performance standard, (3) fossil power tax, (4) renewables share requirement, (5) renewables subsidy, and (6) R&D subsidy. Nonetheless, an optimal portfolio of policies achieves emissions reductions at a significantly lower cost than any single policy. © 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Economic analyses of climate change policies frequently focus on reductions of energy-related carbon dioxide emissions via market-based, economy-wide policies. The current course of environment and energy policy debate in the United States, however, suggests an alternative outcome: sector-based and/or inefficiently designed policies. This paper uses a collection of specialized, sector-based models in conjunction with a computable general equilibrium model of the economy to examine and compare these policies at an aggregate level. We examine the relative cost of different policies designed to achieve the same quantity of emission reductions. We find that excluding a limited number of sectors from an economy-wide policy does not significantly raise costs. Focusing policy solely on the electricity and transportation sectors doubles costs, however, and using non-market policies can raise cost by a factor of ten. These results are driven in part by, and are sensitive to, our modeling of pre-existing tax distortions. Copyright © 2006 by the IAEE. All rights reserved.