4 resultados para classification and regression trees

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001ĝ€ "2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997ĝ€ "2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to quickly detect and respond to visual stimuli in the environment is critical to many human activities. While such perceptual and visual-motor skills are important in a myriad of contexts, considerable variability exists between individuals in these abilities. To better understand the sources of this variability, we assessed perceptual and visual-motor skills in a large sample of 230 healthy individuals via the Nike SPARQ Sensory Station, and compared variability in their behavioral performance to demographic, state, sleep and consumption characteristics. Dimension reduction and regression analyses indicated three underlying factors: Visual-Motor Control, Visual Sensitivity, and Eye Quickness, which accounted for roughly half of the overall population variance in performance on this battery. Inter-individual variability in Visual-Motor Control was correlated with gender and circadian patters such that performance on this factor was better for males and for those who had been awake for a longer period of time before assessment. The current findings indicate that abilities involving coordinated hand movements in response to stimuli are subject to greater individual variability, while visual sensitivity and occulomotor control are largely stable across individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge-based radiation treatment is an emerging concept in radiotherapy. It

mainly refers to the technique that can guide or automate treatment planning in

clinic by learning from prior knowledge. Dierent models are developed to realize

it, one of which is proposed by Yuan et al. at Duke for lung IMRT planning. This

model can automatically determine both beam conguration and optimization ob-

jectives with non-coplanar beams based on patient-specic anatomical information.

Although plans automatically generated by this model demonstrate equivalent or

better dosimetric quality compared to clinical approved plans, its validity and gener-

ality are limited due to the empirical assignment to a coecient called angle spread

constraint dened in the beam eciency index used for beam ranking. To eliminate

these limitations, a systematic study on this coecient is needed to acquire evidences

for its optimal value.

To achieve this purpose, eleven lung cancer patients with complex tumor shape

with non-coplanar beams adopted in clinical approved plans were retrospectively

studied in the frame of the automatic lung IMRT treatment algorithm. The primary

and boost plans used in three patients were treated as dierent cases due to the

dierent target size and shape. A total of 14 lung cases, thus, were re-planned using

the knowledge-based automatic lung IMRT planning algorithm by varying angle

spread constraint from 0 to 1 with increment of 0.2. A modied beam angle eciency

index used for navigate the beam selection was adopted. Great eorts were made to assure the quality of plans associated to every angle spread constraint as good

as possible. Important dosimetric parameters for PTV and OARs, quantitatively

re

ecting the plan quality, were extracted from the DVHs and analyzed as a function

of angle spread constraint for each case. Comparisons of these parameters between

clinical plans and model-based plans were evaluated by two-sampled Students t-tests,

and regression analysis on a composite index built on the percentage errors between

dosimetric parameters in the model-based plans and those in the clinical plans as a

function of angle spread constraint was performed.

Results show that model-based plans generally have equivalent or better quality

than clinical approved plans, qualitatively and quantitatively. All dosimetric param-

eters except those for lungs in the automatically generated plans are statistically

better or comparable to those in the clinical plans. On average, more than 15% re-

duction on conformity index and homogeneity index for PTV and V40, V60 for heart

while an 8% and 3% increase on V5, V20 for lungs, respectively, are observed. The

intra-plan comparison among model-based plans demonstrates that plan quality does

not change much with angle spread constraint larger than 0.4. Further examination

on the variation curve of the composite index as a function of angle spread constraint

shows that 0.6 is the optimal value that can result in statistically the best achievable

plans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To build a model that will predict the survival time for patients that were treated with stereotactic radiosurgery for brain metastases using support vector machine (SVM) regression.

Methods and Materials: This study utilized data from 481 patients, which were equally divided into training and validation datasets randomly. The SVM model used a Gaussian RBF function, along with various parameters, such as the size of the epsilon insensitive region and the cost parameter (C) that are used to control the amount of error tolerated by the model. The predictor variables for the SVM model consisted of the actual survival time of the patient, the number of brain metastases, the graded prognostic assessment (GPA) and Karnofsky Performance Scale (KPS) scores, prescription dose, and the largest planning target volume (PTV). The response of the model is the survival time of the patient. The resulting survival time predictions were analyzed against the actual survival times by single parameter classification and two-parameter classification. The predicted mean survival times within each classification were compared with the actual values to obtain the confidence interval associated with the model’s predictions. In addition to visualizing the data on plots using the means and error bars, the correlation coefficients between the actual and predicted means of the survival times were calculated during each step of the classification.

Results: The number of metastases and KPS scores, were consistently shown to be the strongest predictors in the single parameter classification, and were subsequently used as first classifiers in the two-parameter classification. When the survival times were analyzed with the number of metastases as the first classifier, the best correlation was obtained for patients with 3 metastases, while patients with 4 or 5 metastases had significantly worse results. When the KPS score was used as the first classifier, patients with a KPS score of 60 and 90/100 had similar strong correlation results. These mixed results are likely due to the limited data available for patients with more than 3 metastases or KPS scores of 60 or less.

Conclusions: The number of metastases and the KPS score both showed to be strong predictors of patient survival time. The model was less accurate for patients with more metastases and certain KPS scores due to the lack of training data.