5 resultados para brain function

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding how genes affect behavior is critical to develop precise therapies for human behavioral disorders. The ability to investigate the relationship between genes and behavior has been greatly advanced over the last few decades due to progress in gene-targeting technology. Recently, the Tet gene family was discovered and implicated in epigenetic modification of DNA methylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). 5hmC and its catalysts, the TET proteins, are highly abundant in the postnatal brain but with unclear functions. To investigate their neural functions, we generated new lines of Tet1 and Tet3 mutant mice using a gene targeting approach. We designed both mutations to cause a frameshift by deleting the largest coding exon of Tet1 (Tet1Δe4) and the catalytic domain of Tet3 (Tet3Δe7-9). As Tet1 is also highly expressed in embryonic stem cells (ESCs), we generated Tet1 homozygous deleted ESCs through sequential targeting to compare the function of Tet1 in the brain to its role in ESCs. To test our hypothesis that TET proteins epigenetically regulate transcription of key neural genes important for normal brain function, we examined transcriptional and epigenetic differences in the Tet1Δe4 mouse brain. The oxytocin receptor (OXTR), a neural gene implicated in social behaviors, is suggested to be epigenetically regulated by an unknown mechanism. Interestingly, several human studies have found associations between OXTR DNA hypermethylation and a wide spectrum of behavioral traits and neuropsychiatric disorders including autism spectrum disorders. Here we report the first evidence for an epigenetic mechanism of Oxtr transcription as expression of Oxtr is reduced in the brains of Tet1Δe4-/- mice. Likewise, the CpG island overlapping the promoter of Oxtr is hypermethylated during early embryonic development and persists into adulthood. We also discovered altered histone modifications at the hypermethylated regions, indicating the loss of TET1 has broad effects on the chromatin structure at Oxtr. Unexpectedly, we discovered an array of novel mRNA isoforms of Oxtr that are selectively reduced in Tet1Δe4-/- mice. Additionally, Tet1Δe4-/- mice display increased agonistic behaviors and impaired maternal care and short-term memory. Our findings support a novel role for TET1 in regulating Oxtr expression by preventing DNA hypermethylation and implicate TET1 in social behaviors, offering novel insight into Oxtr epigenetic regulation and its role in neuropsychiatric disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sexual risk behavior among young adults is a serious public health concern; 50% will contract a sexually transmitted infection (STI) before the age of 25. The current study collected self-report personality and sexual history data, as well as neuroimaging, experimental behavioral (e.g., real-time hypothetical sexual decision making data), and self-report sexual arousal data from 120 heterosexual young adults ages 18-26. In addition, longitudinal changes in self-reported sexual behavior were collected from a subset (n = 70) of the participants. The primary aims of the study were (1) to predict differences in self-report sexual behavior and hypothetical sexual decision-making (in response to sexually explicit audio-visual cues) as a function of ventral striatum (VS) and amygdala activity, (2) test whether the association between sexual behavior/decision-making and brain function is moderated by gender, self-reported sexual arousal, and/or trait-level personality factors (i.e., self-control, impulsivity, and sensation seeking) and (3) to examine how the main effects of neural function and interaction effects predict sexual risk behavior over time. Our hypotheses were mostly supported across the sexual behavior and decision-making outcome variables, such that neural risk phenotypes (heightened reward-related ventral striatum activity coupled with decreased threat-related amygdala activity) were associated with greater lifetime sexual partners at baseline measured and over time (longitudinal analyses). Impulsivity moderated the relationship between neural function and self-reported number of sexual partners at baseline and follow up measures, as well as experimental condom use decision-making. Sexual arousal and sensation seeking moderated the relationship between neural function and baseline and follow up self-reports of number of sexual partners. Finally, unique gender differences were observed in the relationship between threat and reward-related neural reactivity and self-reported sexual risk behavior. The results of this study provide initial evidence for the potential role for neurobiological approaches to understanding sexual decision-making and risk behavior. With continued research, establishing biomarkers for sexual risk behavior could help inform the development of novel and more effective individually tailored sexual health prevention and intervention efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.

This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.

In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To build a model that will predict the survival time for patients that were treated with stereotactic radiosurgery for brain metastases using support vector machine (SVM) regression.

Methods and Materials: This study utilized data from 481 patients, which were equally divided into training and validation datasets randomly. The SVM model used a Gaussian RBF function, along with various parameters, such as the size of the epsilon insensitive region and the cost parameter (C) that are used to control the amount of error tolerated by the model. The predictor variables for the SVM model consisted of the actual survival time of the patient, the number of brain metastases, the graded prognostic assessment (GPA) and Karnofsky Performance Scale (KPS) scores, prescription dose, and the largest planning target volume (PTV). The response of the model is the survival time of the patient. The resulting survival time predictions were analyzed against the actual survival times by single parameter classification and two-parameter classification. The predicted mean survival times within each classification were compared with the actual values to obtain the confidence interval associated with the model’s predictions. In addition to visualizing the data on plots using the means and error bars, the correlation coefficients between the actual and predicted means of the survival times were calculated during each step of the classification.

Results: The number of metastases and KPS scores, were consistently shown to be the strongest predictors in the single parameter classification, and were subsequently used as first classifiers in the two-parameter classification. When the survival times were analyzed with the number of metastases as the first classifier, the best correlation was obtained for patients with 3 metastases, while patients with 4 or 5 metastases had significantly worse results. When the KPS score was used as the first classifier, patients with a KPS score of 60 and 90/100 had similar strong correlation results. These mixed results are likely due to the limited data available for patients with more than 3 metastases or KPS scores of 60 or less.

Conclusions: The number of metastases and the KPS score both showed to be strong predictors of patient survival time. The model was less accurate for patients with more metastases and certain KPS scores due to the lack of training data.