9 resultados para biophotons, squeezed light, nonclassical states
em Duke University
Resumo:
Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ∼ 100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ∼ 140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales.
Resumo:
The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.
Resumo:
High-efficiency collection of photons emitted by a point source over a wide field of view (FoV) is crucial for many applications. Multiscale optics offer improved light collection by utilizing small optical components placed close to the optical source, while maintaining a wide FoV provided by conventional imaging optics. In this work, we demonstrate collection efficiency of 26% of photons emitted by a pointlike source using a micromirror fabricated in silicon with no significant decrease in collection efficiency over a 10 mm object space.
Resumo:
We present measurements of morphological features in a thick turbid sample using light-scattering spectroscopy (LSS) and Fourier-domain low-coherence interferometry (fLCI) by processing with the dual-window (DW) method. A parallel frequency domain optical coherence tomography (OCT) system with a white-light source is used to image a two-layer phantom containing polystyrene beads of diameters 4.00 and 6.98 mum on the top and bottom layers, respectively. The DW method decomposes each OCT A-scan into a time-frequency distribution with simultaneously high spectral and spatial resolution. The spectral information from localized regions in the sample is used to determine scatterer structure. The results show that the two scatterer populations can be differentiated using LSS and fLCI.
Resumo:
The variability of summer precipitation in the southeastern United States is examined in this study using 60-yr (1948-2007) rainfall data. The Southeast summer rainfalls exhibited higher interannual variability with more intense summer droughts and anomalous wetness in the recent 30 years (1978-2007) than in the prior 30 years (1948-77). Such intensification of summer rainfall variability was consistent with a decrease of light (0.1-1 mm day-1) and medium (1-10 mm day-1) rainfall events during extremely dry summers and an increase of heavy (.10 mm day-1) rainfall events in extremely wet summers. Changes in rainfall variability were also accompanied by a southward shift of the region of maximum zonal wind variability at the jet stream level in the latter period. The covariability between the Southeast summer precipitation and sea surface temperatures (SSTs) is also analyzed using the singular value decomposition (SVD) method. It is shown that the increase of Southeast summer precipitation variability is primarily associated with a higher SST variability across the equatorial Atlantic and also SST warming in the Atlantic. © 2010 American Meteorological Society.
Resumo:
ct: We introduce a new concept for stimulated-Brillouin-scattering-based slow light in optical fibers that is applicable for broadly-tunable frequency-swept sources. It allows slow light to be achieved, in principle, over the entire transparency window of the optical fiber. We demonstrate a slow light delay of 10 ns at 1.55 μm using a 10-m-long photonic crystal fiber with a source sweep rate of 400 MHz/μs and a pump power of 200 mW. We also show that there exists a maximal delay obtainable by this method, which is set by the SBS threshold, independent of sweep rate. For our fiber with optimum length, this maximum delay is ~38 ns, obtained for a pump power of 760 mW.
Resumo:
We use an information-theoretic method developed by Neifeld and Lee [J. Opt. Soc. Am. A 25, C31 (2008)] to analyze the performance of a slow-light system. Slow-light is realized in this system via stimulated Brillouin scattering in a 2 km-long, room-temperature, highly nonlinear fiber pumped by a laser whose spectrum is tailored and broadened to 5 GHz. We compute the information throughput (IT), which quantifies the fraction of information transferred from the source to the receiver and the information delay (ID), which quantifies the delay of a data stream at which the information transfer is largest, for a range of experimental parameters. We also measure the eye-opening (EO) and signal-to-noise ratio (SNR) of the transmitted data stream and find that they scale in a similar fashion to the information-theoretic method. Our experimental findings are compared to a model of the slow-light system that accounts for all pertinent noise sources in the system as well as data-pulse distortion due to the filtering effect of the SBS process. The agreement between our observations and the predictions of our model is very good. Furthermore, we compare measurements of the IT for an optimal flattop gain profile and for a Gaussian-shaped gain profile. For a given pump-beam power, we find that the optimal profile gives a 36% larger ID and somewhat higher IT compared to the Gaussian profile. Specifically, the optimal (Gaussian) profile produces a fractional slow-light ID of 0.94 (0.69) and an IT of 0.86 (0.86) at a pump-beam power of 450 mW and a data rate of 2.5 Gbps. Thus, the optimal profile better utilizes the available pump-beam power, which is often a valuable resource in a system design.
Resumo:
We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noisemodulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR in the comparison.
Resumo:
© 2015 Human Kinetics, Inc.Background: Young children's physical activity (PA) is influenced by their child care environment. This study assessed PA practices in centers from Massachusetts (MA) and Rhode Island (RI), compared them to best practice recommendations, and assessed differences between states and center profit status. We also assessed weather-related practices. Methods: Sixty percent of MA and 54% of RI directors returned a survey, for a total of 254. Recommendations were 1) daily outdoor play, 2) providing outdoor play area, 3) limiting fixed play structures, 4) variety of portable play equipment, and 5) providing indoor play area. We fit multivariable linear regression models to examine adjusted associations between state, profit status, PA, and weather-related practices. Results: MA did not differ from RI in meeting PA recommendations (β = 0.03; 0.15, 0.21; P = .72), but MA centers scored higher on weather-related practices (β = 0.47; 0.16, 0.79; P = .004). For-profit centers had lower PA scores compared with nonprofits (β = -0.20; 95% CI: -0.38, -0.02; P = .03), but they did not differ for weather (β = 0.12; -0.19, 0.44; P = .44). Conclusions: More MA centers allowed children outside in light rain or snow. For-profit centers had more equipment-both fixed and portable. Results from this study may help inform interventions to increase PA in children.