3 resultados para behavioral models
em Duke University
Resumo:
BACKGROUND: Despite the impact of hypertension and widely accepted target values for blood pressure (BP), interventions to improve BP control have had limited success. OBJECTIVES: We describe the design of a 'translational' study that examines the implementation, impact, sustainability, and cost of an evidence-based nurse-delivered tailored behavioral self-management intervention to improve BP control as it moves from a research context to healthcare delivery. The study addresses four specific aims: assess the implementation of an evidence-based behavioral self-management intervention to improve BP levels; evaluate the clinical impact of the intervention as it is implemented; assess organizational factors associated with the sustainability of the intervention; and assess the cost of implementing and sustaining the intervention. METHODS: The project involves three geographically diverse VA intervention facilities and nine control sites. We first conduct an evaluation of barriers and facilitators for implementing the intervention at intervention sites. We examine the impact of the intervention by comparing 12-month pre/post changes in BP control between patients in intervention sites versus patients in the matched control sites. Next, we examine the sustainability of the intervention and organizational factors facilitating or hindering the sustained implementation. Finally, we examine the costs of intervention implementation. Key outcomes are acceptability and costs of the program, as well as changes in BP. Outcomes will be assessed using mixed methods (e.g., qualitative analyses--pattern matching; quantitative methods--linear mixed models). DISCUSSION: The study results will provide information about the challenges and costs to implement and sustain the intervention, and what clinical impact can be expected.
Resumo:
Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.
Resumo:
G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D(2) dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3β and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA.