12 resultados para autism spectrum condition.
em Duke University
Resumo:
Diagnosis and treatment of comorbid neuropsychiatric illness is often a secondary focus of treatment in individuals with autism spectrum disorder (ASD), given that substantial impairment may be caused by core symptoms of ASD itself. However, psychiatric comorbidities, including depressive disorders, are common and frequently result in additional functional impairment, treatment costs, and burden on caregivers. Clinicians may struggle to appropriately diagnose depression in ASD due to communication deficits, atypical presentation of depression in ASD, and lack of standardized diagnostic tools. Specific risk and resilience factors for depression in ASD across the lifespan, including level of functioning, age, family history, and coping style, have been suggested, but require further study. Treatment with medications or psychotherapy may be beneficial, though more research is required to establish guidelines for management of symptoms. This review will describe typical presentations of depression in individuals with ASD, review current information on the prevalence, assessment, and treatment of comorbid depression in individuals with ASD, and identify important research gaps.
Resumo:
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including "Neural synaptic plasticity regulation" and "Neurotransmitter secretion regulation." Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype.
Resumo:
Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including "axon guidance" and "regulation of actin cytoskeleton." In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD.
Resumo:
BACKGROUND: Previous research has found accumulating evidence for atypical reward processing in autism spectrum disorders (ASD), particularly in the context of social rewards. Yet, this line of research has focused largely on positive social reinforcement, while little is known about the processing of negative reinforcement in individuals with ASD. METHODS: The present study examined neural responses to social negative reinforcement (a face displaying negative affect) and non-social negative reinforcement (monetary loss) in children with ASD relative to typically developing children, using functional magnetic resonance imaging (fMRI). RESULTS: We found that children with ASD demonstrated hypoactivation of the right caudate nucleus while anticipating non-social negative reinforcement and hypoactivation of a network of frontostriatal regions (including the nucleus accumbens, caudate nucleus, and putamen) while anticipating social negative reinforcement. In addition, activation of the right caudate nucleus during non-social negative reinforcement was associated with individual differences in social motivation. CONCLUSIONS: These results suggest that atypical responding to negative reinforcement in children with ASD may contribute to social motivational deficits in this population.
Resumo:
BACKGROUND: Efficient effort expenditure to obtain rewards is critical for optimal goal-directed behavior and learning. Clinical observation suggests that individuals with autism spectrum disorders (ASD) may show dysregulated reward-based effort expenditure, but no behavioral study to date has assessed effort-based decision-making in ASD. METHODS: The current study compared a group of adults with ASD to a group of typically developing adults on the Effort Expenditure for Rewards Task (EEfRT), a behavioral measure of effort-based decision-making. In this task, participants were provided with the probability of receiving a monetary reward on a particular trial and asked to choose between either an "easy task" (less motoric effort) for a small, stable reward or a "hard task" (greater motoric effort) for a variable but consistently larger reward. RESULTS: Participants with ASD chose the hard task more frequently than did the control group, yet were less influenced by differences in reward value and probability than the control group. Additionally, effort-based decision-making was related to repetitive behavior symptoms across both groups. CONCLUSIONS: These results suggest that individuals with ASD may be more willing to expend effort to obtain a monetary reward regardless of the reward contingencies. More broadly, results suggest that behavioral choices may be less influenced by information about reward contingencies in individuals with ASD. This atypical pattern of effort-based decision-making may be relevant for understanding the heightened reward motivation for circumscribed interests in ASD.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
Background: Autism Spectrum Disorder (ASD) is a major global health challenge as the majority of individuals with ASD live in low- and middle-income countries (LMICs) and receive little to no services or support from health or social care systems. Despite this global crisis, the development and validation of ASD interventions has almost exclusively occurred in high-income countries, leaving many unanswered questions regarding what contextual factors would need to be considered to ensure the effectiveness of interventions in LMICs. This study sought to conduct explorative research on the contextual adaptation of a caregiver-mediated early ASD intervention for use in a low-resource setting in South Africa.
Methods: Participants included 22 caregivers of children with autism, including mothers (n=16), fathers (n=4), and grandmothers (n=2). Four focus groups discussions were conducted in Cape Town, South Africa with caregivers and lasted between 1.5-3.5 hours in length. Data was recorded, translated, and transcribed by research personnel. Data was then coded for emerging themes and analyzed using the NVivo qualitative data analysis software package.
Results: Nine contextual factors were reported to be important for the adaptation process including culture, language, location of treatment, cost of treatment, type of service provider, familial needs, length of treatment, support, and parenting practices. One contextual factor, evidence-based treatment, was reported to be both important and not important for adaptation by caregivers. The contextual factor of stigma was identified as an emerging theme and a specifically relevant challenge when developing an ASD intervention for use in a South African context.
Conclusions: Eleven contextual factors were discussed in detail by caregivers and examples were given regarding the challenges, sources, and preferences related to the contextual adaptation of a parent-mediated early ASD intervention in South Africa. Caregivers reported a preference for an affordable, in-home, individualized early ASD intervention, where they have an active voice in shaping treatment goals. Distrust of community-based nurses and health workers to deliver an early ASD intervention and challenges associated with ASD-based stigma were two unanticipated findings from this data set. Implications for practice and further research are discussed.
Resumo:
© 2015 Young, Smith, Coutlee and Huettel.Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony) with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes). We used independent component analysis (ICA) combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network (ECN) and a face-scene network (FSN) predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits.
Resumo:
Understanding how genes affect behavior is critical to develop precise therapies for human behavioral disorders. The ability to investigate the relationship between genes and behavior has been greatly advanced over the last few decades due to progress in gene-targeting technology. Recently, the Tet gene family was discovered and implicated in epigenetic modification of DNA methylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). 5hmC and its catalysts, the TET proteins, are highly abundant in the postnatal brain but with unclear functions. To investigate their neural functions, we generated new lines of Tet1 and Tet3 mutant mice using a gene targeting approach. We designed both mutations to cause a frameshift by deleting the largest coding exon of Tet1 (Tet1Δe4) and the catalytic domain of Tet3 (Tet3Δe7-9). As Tet1 is also highly expressed in embryonic stem cells (ESCs), we generated Tet1 homozygous deleted ESCs through sequential targeting to compare the function of Tet1 in the brain to its role in ESCs. To test our hypothesis that TET proteins epigenetically regulate transcription of key neural genes important for normal brain function, we examined transcriptional and epigenetic differences in the Tet1Δe4 mouse brain. The oxytocin receptor (OXTR), a neural gene implicated in social behaviors, is suggested to be epigenetically regulated by an unknown mechanism. Interestingly, several human studies have found associations between OXTR DNA hypermethylation and a wide spectrum of behavioral traits and neuropsychiatric disorders including autism spectrum disorders. Here we report the first evidence for an epigenetic mechanism of Oxtr transcription as expression of Oxtr is reduced in the brains of Tet1Δe4-/- mice. Likewise, the CpG island overlapping the promoter of Oxtr is hypermethylated during early embryonic development and persists into adulthood. We also discovered altered histone modifications at the hypermethylated regions, indicating the loss of TET1 has broad effects on the chromatin structure at Oxtr. Unexpectedly, we discovered an array of novel mRNA isoforms of Oxtr that are selectively reduced in Tet1Δe4-/- mice. Additionally, Tet1Δe4-/- mice display increased agonistic behaviors and impaired maternal care and short-term memory. Our findings support a novel role for TET1 in regulating Oxtr expression by preventing DNA hypermethylation and implicate TET1 in social behaviors, offering novel insight into Oxtr epigenetic regulation and its role in neuropsychiatric disorders.
Resumo:
BACKGROUND: There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). METHODS: The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. RESULTS: T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. CONCLUSIONS: This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation.
Resumo:
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.