3 resultados para attractive traps

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis (CT) is the most common bacterial agent of sexually transmitted infection and can cause damaging inflammation of the female reproductive tract. As an obligate intracellular pathogen, CT must exit exhausted host cells in a manner that favors successful dissemination. Epithelial cells infected with CT expel decondensed nuclear chromatin at the conclusion of an infectious cycle, and these ensnare CT particles. Whether these chromatin traps benefit the host or the pathogen is not obvious. The overall goal of this work is to begin discerning between these possibilities by determining how chromatin traps impact CT survival following exit and how traps contribute to CT-induced inflammatory processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has demonstrated the strong qualitative differences between the dynamics near a glass transition driven by short-ranged repulsion and one governed by short-ranged attraction. Here, we study in detail the behavior of non-linear, higher-order correlation functions that measure the growth of length scales associated with dynamical heterogeneity in both types of systems. We find that this measure is qualitatively different in the repulsive and attractive cases with regards to the wave vector dependence as well as the time dependence of the standard non-linear four-point dynamical susceptibility. We discuss the implications of these results for the general understanding of dynamical heterogeneity in glass-forming liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Rapid Communication we demonstrate the applicability of an augmented Gibbs ensemble Monte Carlo approach for the phase behavior determination of model colloidal systems with short-ranged depletion attraction and long-ranged repulsion. This technique allows for a quantitative determination of the phase boundaries and ground states in such systems. We demonstrate that gelation may occur in systems of this type as the result of arrested microphase separation, even when the equilibrium state of the system is characterized by compact microphase structures.