1 resultado para asymptotic preserving
em Duke University
Filtro por publicador
- JISC Information Environment Repository (2)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (12)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (21)
- CaltechTHESIS (36)
- Cambridge University Engineering Department Publications Database (34)
- CentAUR: Central Archive University of Reading - UK (20)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (52)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Helda - Digital Repository of University of Helsinki (16)
- Indian Institute of Science - Bangalore - Índia (279)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (189)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (14)
- Universidade Complutense de Madrid (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (6)
- University of Michigan (62)
- University of Queensland eSpace - Australia (5)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We present a mathematical analysis of the asymptotic preserving scheme proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31 (2008), pp. 334-368] for linear transport equations in kinetic and diffusive regimes. We prove that the scheme is uniformly stable and accurate with respect to the mean free path of the particles. This property is satisfied under an explicitly given CFL condition. This condition tends to a parabolic CFL condition for small mean free paths and is close to a convection CFL condition for large mean free paths. Our analysis is based on very simple energy estimates. © 2010 Society for Industrial and Applied Mathematics.