14 resultados para applied optics
em Duke University
Resumo:
We propose an estimation-theoretic approach to the inference of an incoherent 3D scattering density from 2D scattered speckle field measurements. The object density is derived from the covariance of the speckle field. The inference is performed by a constrained optimization technique inspired by compressive sensing theory. Experimental results demonstrate and verify the performance of our estimates.
Resumo:
We apply a coded aperture snapshot spectral imager (CASSI) to fluorescence microscopy. CASSI records a two-dimensional (2D) spectrally filtered projection of a three-dimensional (3D) spectral data cube. We minimize a convex quadratic function with total variation (TV) constraints for data cube estimation from the 2D snapshot. We adapt the TV minimization algorithm for direct fluorescent bead identification from CASSI measurements by combining a priori knowledge of the spectra associated with each bead type. Our proposed method creates a 2D bead identity image. Simulated fluorescence CASSI measurements are used to evaluate the behavior of the algorithm. We also record real CASSI measurements of a ten bead type fluorescence scene and create a 2D bead identity map. A baseline image from filtered-array imaging system verifies CASSI's 2D bead identity map.
Resumo:
We describe an active millimeter-wave holographic imaging system that uses compressive measurements for three-dimensional (3D) tomographic object estimation. Our system records a two-dimensional (2D) digitized Gabor hologram by translating a single pixel incoherent receiver. Two approaches for compressive measurement are undertaken: nonlinear inversion of a 2D Gabor hologram for 3D object estimation and nonlinear inversion of a randomly subsampled Gabor hologram for 3D object estimation. The object estimation algorithm minimizes a convex quadratic problem using total variation (TV) regularization for 3D object estimation. We compare object reconstructions using linear backpropagation and TV minimization, and we present simulated and experimental reconstructions from both compressive measurement strategies. In contrast with backpropagation, which estimates the 3D electromagnetic field, TV minimization estimates the 3D object that produces the field. Despite undersampling, range resolution is consistent with the extent of the 3D object band volume.
Resumo:
We explore the possibilities of obtaining compression in video through modified sampling strategies using multichannel imaging systems. The redundancies in video streams are exploited through compressive sampling schemes to achieve low power and low complexity video sensors. The sampling strategies as well as the associated reconstruction algorithms are discussed. These compressive sampling schemes could be implemented in the focal plane readout hardware resulting in drastic reduction in data bandwidth and computational complexity.
Resumo:
We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals (PC). The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The basis of the concept is the possibility to fit some equal frequency surfaces of certain PCs with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. PC cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances such as glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.
Resumo:
Optical coherence tomography (OCT) is a noninvasive three-dimensional interferometric imaging technique capable of achieving micrometer scale resolution. It is now a standard of care in ophthalmology, where it is used to improve the accuracy of early diagnosis, to better understand the source of pathophysiology, and to monitor disease progression and response to therapy. In particular, retinal imaging has been the most prevalent clinical application of OCT, but researchers and companies alike are developing OCT systems for cardiology, dermatology, dentistry, and many other medical and industrial applications.
Adaptive optics (AO) is a technique used to reduce monochromatic aberrations in optical instruments. It is used in astronomical telescopes, laser communications, high-power lasers, retinal imaging, optical fabrication and microscopy to improve system performance. Scanning laser ophthalmoscopy (SLO) is a noninvasive confocal imaging technique that produces high contrast two-dimensional retinal images. AO is combined with SLO (AOSLO) to compensate for the wavefront distortions caused by the optics of the eye, providing the ability to visualize the living retina with cellular resolution. AOSLO has shown great promise to advance the understanding of the etiology of retinal diseases on a cellular level.
Broadly, we endeavor to enhance the vision outcome of ophthalmic patients through improved diagnostics and personalized therapy. Toward this end, the objective of the work presented herein was the development of advanced techniques for increasing the imaging speed, reducing the form factor, and broadening the versatility of OCT and AOSLO. Despite our focus on applications in ophthalmology, the techniques developed could be applied to other medical and industrial applications. In this dissertation, a technique to quadruple the imaging speed of OCT was developed. This technique was demonstrated by imaging the retinas of healthy human subjects. A handheld, dual depth OCT system was developed. This system enabled sequential imaging of the anterior segment and retina of human eyes. Finally, handheld SLO/OCT systems were developed, culminating in the design of a handheld AOSLO system. This system has the potential to provide cellular level imaging of the human retina, resolving even the most densely packed foveal cones.
Resumo:
The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.
Resumo:
High-efficiency collection of photons emitted by a point source over a wide field of view (FoV) is crucial for many applications. Multiscale optics offer improved light collection by utilizing small optical components placed close to the optical source, while maintaining a wide FoV provided by conventional imaging optics. In this work, we demonstrate collection efficiency of 26% of photons emitted by a pointlike source using a micromirror fabricated in silicon with no significant decrease in collection efficiency over a 10 mm object space.
Resumo:
We developed a ratiometric method capable of estimating total hemoglobin concentration from optically measured diffuse reflectance spectra. The three isosbestic wavelength ratio pairs that best correlated to total hemoglobin concentration independent of saturation and scattering were 545/390, 452/390, and 529/390 nm. These wavelength pairs were selected using forward Monte Carlo simulations which were used to extract hemoglobin concentration from experimental phantom measurements. Linear regression coefficients from the simulated data were directly applied to the phantom data, by calibrating for instrument throughput using a single phantom. Phantoms with variable scattering and hemoglobin saturation were tested with two different instruments, and the average percent errors between the expected and ratiometrically-extracted hemoglobin concentration were as low as 6.3%. A correlation of r = 0.88 between hemoglobin concentration extracted using the 529/390 nm isosbestic ratio and a scalable inverse Monte Carlo model was achieved for in vivo dysplastic cervical measurements (hemoglobin concentrations have been shown to be diagnostic for the detection of cervical pre-cancer by our group). These results indicate that use of such a simple ratiometric method has the potential to be used in clinical applications where tissue hemoglobin concentrations need to be rapidly quantified in vivo.
Resumo:
We apply the transformation optical technique to modify or improve conventional refractive and gradient index optical imaging devices. In particular, when it is known that a detector will terminate the paths of rays over some surface, more freedom is available in the transformation approach, since the wave behavior over a large portion of the domain becomes unimportant. For the analyzed configurations, quasi-conformal and conformal coordinate transformations can be used, leading to simplified constitutive parameter distributions that, in some cases, can be realized with isotropic index; index-only media can be low-loss and have broad bandwidth. We apply a coordinate transformation to flatten a Maxwell fish-eye lens, forming a near-perfect relay lens; and also flatten the focal surface associated with a conventional refractive lens, such that the system exhibits an ultra-wide field-of-view with reduced aberration.
Resumo:
Concepts are mental representations that are the constituents of thought. EdouardMachery claims that psychologists generally understand concepts to be bodies of knowledge or information carrying mental states stored in long term memory that are used in the higher cognitive competences such as in categorization judgments, induction, planning, and analogical reasoning. While most research in the concepts field generally have been on concrete concepts such as LION, APPLE, and CHAIR, this paper will examine abstract moral concepts and whether such concepts may have prototype and exemplar structure. After discussing the philosophical importance of this project and explaining the prototype and exemplar theories, criticisms will be made against philosophers, who without experimental support from the sciences of the mind, contend that moral concepts have prototype and/or exemplar structure. Next, I will scrutinize Mark Johnson's experimentally-based argument that moral concepts have prototype structure. Finally, I will show how our moral concepts may indeed have prototype and exemplar structure as well as explore the further ethical implications that may be reached by this particular moral concepts conclusion. © 2011 Springer Science+Business Media B.V.
Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials
Resumo:
Transformation optics (TO) is a powerful tool for the design of electromagnetic and optical devices with novel functionality derived from the unusual properties of the transformation media. In general, the fabrication of TO media is challenging, requiring spatially varying material properties with both anisotropic electric and magnetic responses. Though metamaterials have been proposed as a path for achieving such complex media, the required properties arising from the most general transformations remain elusive, and cannot implemented by state-of-the-art fabrication techniques. Here, we propose faceted approximations of TO media of arbitrary shape in which the volume of the TO device is divided into flat metamaterial layers. These layers can be readily implemented by standard fabrication and stacking techniques. We illustrate our approximation approach for the specific example of a two-dimensional, omnidirectional "invisibility cloak", and quantify its performance using the total scattering cross section as a practical figure of merit. © 2012 American Institute of Physics.