7 resultados para antithrombotic agents, development for clinical use
em Duke University
Resumo:
Anticoagulant agents are commonly used drugs to reduce blood coagulation in acute and chronic clinical settings. Many of these drugs target the common pathway of coagulation because it is critical for thrombin generation and disruption of this portion of the pathway has profound effects on the hemostatic process. Currently available drugs for these indications struggle with balancing desired activity with immunogenicity and poor reversibility or irreversibility in the event of hemorrhage. While improvements are being made with the current drugs, new drugs with better therapeutic indices are needed for surgical intervention and chronic indications to prevent thrombosis from occurring.
A class of therapeutics known as aptamers may be able to meet the need for safer anticoagulant agents. Aptamer are short single-stranded RNA oligonucleotides that adopt specific secondary and tertiary structures based upon their sequence. They can be generated to both enzymes and cofactors because they derive their inhibitory activity by blocking protein-protein interactions, rather than active site inhibition. They inhibit their target proteins with a high level of specificity and bind with high affinity to their target. Additionally, they can be reversed using two different antidote approaches, specific oligonucleotide antidotes, or with cationic, “universal” antidotes. The reversal of their activity is both rapid and durable.
The ability of aptamers to be generated to cofactors has been conclusively proven by generating an aptamer targeting the common pathway coagulation cofactor, Factor V (FV). We developed two aptamers with anticoagulant ability that bind to both FV and FVa, the active cofactor. Both aptamers were truncated to smaller functional sizes and had specific point mutant aptamers developed for use as controls. The anticoagulant activity of both aptamer-mutant pairs was characterized using plasma-based clotting assays and whole blood assays. The mechanism of action resulting in anticoagulant activity was assessed for one aptamer. The aptamer was found to block FVa docking to membrane surfaces, a mechanism not previously observed in any of our other anticoagulant aptamers.
To explore development of aptamers as anticoagulant agents targeting the common pathway for surgical interventions, we fused two anticoagulant aptamers targeting Factor X and prothrombin into a single molecule. The bivalent aptamer was truncated to a minimal size while maintaining robust anticoagulant activity. Characterization of the bivalent aptamer in plasma-based clotting assays indicated we had generated a very robust anticoagulant therapeutic. Furthermore, we were able to simultaneously reverse the activity of both aptamers with a single oligonucleotide antidote. This rapid and complete reversal of anticoagulant activity is not available in the antithrombotic agents currently used in surgery.
Resumo:
Advancements in retinal imaging technologies have drastically improved the quality of eye care in the past couple decades. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are two examples of critical imaging modalities for the diagnosis of retinal pathologies. However current-generation SLO and OCT systems have limitations in diagnostic capability due to the following factors: the use of bulky tabletop systems, monochromatic imaging, and resolution degradation due to ocular aberrations and diffraction.
Bulky tabletop SLO and OCT systems are incapable of imaging patients that are supine, under anesthesia, or otherwise unable to maintain the required posture and fixation. Monochromatic SLO and OCT imaging prevents the identification of various color-specific diagnostic markers visible with color fundus photography like those of neovascular age-related macular degeneration. Resolution degradation due to ocular aberrations and diffraction has prevented the imaging of photoreceptors close to the fovea without the use of adaptive optics (AO), which require bulky and expensive components that limit the potential for widespread clinical use.
In this dissertation, techniques for extending the diagnostic capability of SLO and OCT systems are developed. These techniques include design strategies for miniaturizing and combining SLO and OCT to permit multi-modal, lightweight handheld probes to extend high quality retinal imaging to pediatric eye care. In addition, a method for extending true color retinal imaging to SLO to enable high-contrast, depth-resolved, high-fidelity color fundus imaging is demonstrated using a supercontinuum light source. Finally, the development and combination of SLO with a super-resolution confocal microscopy technique known as optical photon reassignment (OPRA) is demonstrated to enable high-resolution imaging of retinal photoreceptors without the use of adaptive optics.
Resumo:
Coronary heart disease is the major cause of morbidity and mortality throughout the world, and is responsible for approximately one of every six deaths in the US. Angina pectoris is a clinical syndrome characterized by discomfort, typically in the chest, neck, chin, or left arm, induced by physical exertion, emotional stress, or cold, and relieved by rest or nitroglycerin. The main goals of treatment of stable angina pectoris are to improve quality of life by reducing the severity and/or frequency of symptoms, to increase functional capacity, and to improve prognosis. Ranolazine is a recently developed antianginal with unique methods of action. In this paper, we review the pharmacology of ranolazine, clinical trials supporting its approval for clinical use, and studies of its quality of life benefits. We conclude that ranolazine has been shown to be a reasonable and safe option for patients who have refractory ischemic symptoms despite the use of standard medications (for example, nitrates, beta-adrenergic receptor antagonists, and calcium channel antagonists) for treatment of anginal symptoms, and also provides a modestly improved quality of life.
Resumo:
Foundational cellular immunology research of the 1960s and 1970s, together with the advent of monoclonal antibodies and flow cytometry, provided the knowledge base and the technological capability that enabled the elucidation of the role of CD4 T cells in HIV infection. Research identifying the sources and magnitude of variation in CD4 measurements, standardized reagents and protocols, and the development of clinical flow cytometers all contributed to the feasibility of widespread CD4 testing. Cohort studies and clinical trials provided the context for establishing the utility of CD4 for prognosis in HIV-infected persons, initial assessment of in vivo antiretroviral drug activity, and as a surrogate marker for clinical outcome in antiretroviral therapeutic trials. Even with sensitive HIV viral load measurement, CD4 cell counting is still utilized in determining antiretroviral therapy eligibility and time to initiate therapy. New point of care technologies are helping both to lower the cost of CD4 testing and enable its use in HIV test and treat programs around the world.
Resumo:
Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.
Resumo:
Over the last three decades, there has been a precipitous rise in curiosity regarding the clinical use of mindfulness meditation for the self-management of a broad range of chronic health conditions. Despite the ever-growing body of evidence supporting the use of mindfulness-based therapies for both medical and psychological concerns, data on the active ingredients of these mind-body interventions are relatively scarce. Regular engagement in formal mindfulness practice is considered by many to be requisite for generating therapeutic change; however, previous investigations of at-home practice in MBIs have produced mixed results. The equivocal nature of these findings has been attributed to significant methodological limitations, including the lack of standardized, systematic practice monitoring tools, and a singular focus on practice time, with little attention paid to the nature and quality of one’s practice. The present study used a prospective, observational design to assess the effects of home-based practice on dispositional mindfulness, self-compassion, and psychological functioning in twenty-eight people enrolled in an MBSR or MBCT program. To address some of the aforementioned limitations, the present study collected detailed weekly accounts of participants’ home-based practice engagement, including information about practice time (i.e., frequency and duration), exercise type, perceived effort and barriers to participation, and practice quality. Hierarchical multiple regression was used to examine the relative contribution of practice time and practice quality on treatment outcomes, and to explore possible predictors of adherence to at-home practice recommendations. As anticipated, practice quality and perceived effort improved with time; however, rather unexpectedly, practice quality was not a significant predictor of treatment-related improvements in psychological health. Home practice engagement, however, was predictive of change in dispositional mindfulness, in the expected direction. Results of our secondary analyses demonstrated that employment status was predictive of home practice engagement, with those who were unemployed completing more at-home practice on average. Mindfulness self-efficacy at baseline and previous experience with meditation or other contemplative practices were independently predictive of mean practice quality. The results of this study suggest that home practice helps generate meaningful change in dispositional mindfulness, which is purportedly a key mechanism of action in mindfulness-based interventions.
Resumo:
Head motion during a Positron Emission Tomography (PET) brain scan can considerably degrade image quality. External motion-tracking devices have proven successful in minimizing this effect, but the associated time, maintenance, and workflow changes inhibit their widespread clinical use. List-mode PET acquisition allows for the retroactive analysis of coincidence events on any time scale throughout a scan, and therefore potentially offers a data-driven motion detection and characterization technique. An algorithm was developed to parse list-mode data, divide the full acquisition into short scan intervals, and calculate the line-of-response (LOR) midpoint average for each interval. These LOR midpoint averages, known as “radioactivity centroids,” were presumed to represent the center of the radioactivity distribution in the scanner, and it was thought that changes in this metric over time would correspond to intra-scan motion.
Several scans were taken of the 3D Hoffman brain phantom on a GE Discovery IQ PET/CT scanner to test the ability of the radioactivity to indicate intra-scan motion. Each scan incrementally surveyed motion in a different degree of freedom (2 translational and 2 rotational). The radioactivity centroids calculated from these scans correlated linearly to phantom positions/orientations. Centroid measurements over 1-second intervals performed on scans with ~1mCi of activity in the center of the field of view had standard deviations of 0.026 cm in the x- and y-dimensions and 0.020 cm in the z-dimension, which demonstrates high precision and repeatability in this metric. Radioactivity centroids are thus shown to successfully represent discrete motions on the submillimeter scale. It is also shown that while the radioactivity centroid can precisely indicate the amount of motion during an acquisition, it fails to distinguish what type of motion occurred.