3 resultados para annual pastures

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many academic physician-scientists, the yearly Tri-Societies meeting of the ASCI, AAP, and AFCR during the 1960s, '70s, and '80s was an annual rite of spring and the focal point of the academic year. In this brief essay, I set down some miscellaneous recollections of these meetings and some thoughts about why they were of such central importance in the careers of those of my generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (IC). The product of such changes is a higher gross primary production and higher net primary production (NPP). However, fertilization may also alter carbohydrate partitioning from below- to aboveground, increasing aboveground NPP (ANPP). We analyzed effects of long-term N-fertilization on NPP, and that of long-term carbon storing organs (NPPS) in a Pinus sylvestris forest on sandy soil, a wide-ranging forest type in the boreal region. We based our analyses on a combination of destructive harvesting, consecutive mensuration, and optical measurements of canopy openness. After eight-year fertilization with a total of 70gNm-2, ANPP was 27±7% higher in the fertilized (F) relative to the reference (R) stand, but although L increased relative to its pre-fertilization values, IC was not greater than in R. On the seventh year after the treatment initiation, the increase of ANPP was matched by the decrease of belowground NPP (78 vs. 92gCm-2yr-1; ~17% of NPP) and, given the similarity of IC, suggests that the main effect of N-fertilization was changed carbon partitioning rather than increased canopy photosynthesis. Annual NPPS increased linearly with growing season temperature (T) in both treatments, with an upward shift of 70.2gCm-2yr-1 by fertilization, which also caused greater amount of unexplained variation (r2=0.53 in R, 0.21 in F). Residuals of the NPPS-T relationship of F were related to growing season precipitation (P, r2=0.48), indicating that T constrains productivity at this site regardless of fertility, while P is important in determining productivity where N-limitation is alleviated. We estimated that, in a growing season average T (11.5±1.0°C; 33-year-mean), NPPS response to N-fertilization will be nullified with P 31mm less than the mean (325±85mm), and would double with P 109mm greater than the mean. These results suggest that inter-annual variation in climate, particularly in P, may help explaining the reported large variability in growth responses to fertilization of pine stands on sandy soils. Furthermore, forest management of long-rotation systems, such as those of boreal and northern temperate forests, must consider the efficiency of fertilization in terms of wood production in the context of changes in climate predicted for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961–2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p  <  0.01) decrease in annual streamflow, a significant positive trend in annual potential evapotranspiration (p  <  0.01), and an insignificant (p  >  0.1) negative trend in annual precipitation during 1961–2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann–Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s). We conclude that future climate change and variability will further challenge the water supply capacity of the Miyun Reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.