2 resultados para accumulative roll bonding

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Elsevier Ltd. All rights reserved.Laboratory tests on microscale are reported in which millimeter-sized amorphous silica cubes were kept highly compressed in a liquid environment of de-ionized water solutions with different silica ion concentrations for up to four weeks. Such an arrangement simulates an early evolution of bonds between two sand grains stressed in situ. In-house designed Grain Indenter-Puller apparatus allowed measuring strength of such contacts after 3-4 weeks. Observations reported for the first time confirm a long-existing hypothesis that a stressed contact with microcracks generates silica polymers, forming a bonding structure between the grains on a timescale in the order of a few weeks. Such structure exhibits intergranular tensile force at failure of 1-1.5 mN when aged in solutions containing silica ion concentrations of 200-to 500-ppm. The magnitude of such intergranular force is 2-3 times greater than that of water capillary force between the same grains.