8 resultados para academic programming
em Duke University
Resumo:
The health of clergy is important, and clergy may find health programming tailored to them more effective. Little is known about existing clergy health programs. We contacted Protestant denominational headquarters and searched academic databases and the Internet. We identified 56 clergy health programs and categorized them into prevention and personal enrichment; counseling; marriage and family enrichment; peer support; congregational health; congregational effectiveness; denominational enrichment; insurance/strategic pension plans; and referral-based programs. Only 13 of the programs engaged in outcomes evaluation. Using the Socioecological Framework, we found that many programs support individual-level and institutional-level changes, but few programs support congregational-level changes. Outcome evaluation strategies and a central repository for information on clergy health programs are needed. © 2011 Springer Science+Business Media, LLC.
Resumo:
This article describes advances in statistical computation for large-scale data analysis in structured Bayesian mixture models via graphics processing unit (GPU) programming. The developments are partly motivated by computational challenges arising in fitting models of increasing heterogeneity to increasingly large datasets. An example context concerns common biological studies using high-throughput technologies generating many, very large datasets and requiring increasingly high-dimensional mixture models with large numbers of mixture components.We outline important strategies and processes for GPU computation in Bayesian simulation and optimization approaches, give examples of the benefits of GPU implementations in terms of processing speed and scale-up in ability to analyze large datasets, and provide a detailed, tutorial-style exposition that will benefit readers interested in developing GPU-based approaches in other statistical models. Novel, GPU-oriented approaches to modifying existing algorithms software design can lead to vast speed-up and, critically, enable statistical analyses that presently will not be performed due to compute time limitations in traditional computational environments. Supplementalmaterials are provided with all source code, example data, and details that will enable readers to implement and explore the GPU approach in this mixture modeling context. © 2010 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Resumo:
Programmed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is 'altruistic': the killing of some cells can benefit the survivors through release of 'public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the 'Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.
Resumo:
© 2013 American Psychological Association.This meta-analysis synthesizes research on the effectiveness of intelligent tutoring systems (ITS) for college students. Thirty-five reports were found containing 39 studies assessing the effectiveness of 22 types of ITS in higher education settings. Most frequently studied were AutoTutor, Assessment and Learning in Knowledge Spaces, eXtended Tutor-Expert System, and Web Interface for Statistics Education. Major findings include (a) Overall, ITS had a moderate positive effect on college students' academic learning (g = .32 to g = .37); (b) ITS were less effective than human tutoring, but they outperformed all other instruction methods and learning activities, including traditional classroom instruction, reading printed text or computerized materials, computer-assisted instruction, laboratory or homework assignments, and no-treatment control; (c) ITS's effectiveness did not significantly differ by different ITS, subject domain, or the manner or degree of their involvement in instruction and learning; and (d) effectiveness in earlier studies appeared to be significantly greater than that in more recent studies. In addition, there is some evidence suggesting the importance of teachers and pedagogy in ITS-assisted learning.
Resumo:
Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.
Resumo:
BACKGROUND: In the domain of academia, the scholarship of research may include, but not limited to, peer-reviewed publications, presentations, or grant submissions. Programmatic research productivity is one of many measures of academic program reputation and ranking. Another measure or tool for quantifying learning success among physical therapists education programs in the USA is 100 % three year pass rates of graduates on the standardized National Physical Therapy Examination (NPTE). In this study, we endeavored to determine if there was an association between research productivity through artifacts and 100 % three year pass rates on the NPTE. METHODS: This observational study involved using pre-approved database exploration representing all accredited programs in the USA who graduated physical therapists during 2009, 2010 and 2011. Descriptive variables captured included raw research productivity artifacts such as peer reviewed publications and books, number of professional presentations, number of scholarly submissions, total grant dollars, and numbers of grants submitted. Descriptive statistics and comparisons (using chi square and t-tests) among program characteristics and research artifacts were calculated. Univariate logistic regression analyses, with appropriate control variables were used to determine associations between research artifacts and 100 % pass rates. RESULTS: Number of scholarly artifacts submitted, faculty with grants, and grant proposals submitted were significantly higher in programs with 100 % three year pass rates. However, after controlling for program characteristics such as grade point average, diversity percentage of cohort, public/private institution, and number of faculty, there were no significant associations between scholarly artifacts and 100 % three year pass rates. CONCLUSIONS: Factors outside of research artifacts are likely better predictors for passing the NPTE.