6 resultados para Younger Dryas event
em Duke University
Resumo:
The first calculation of triangular flow ν3 in Au+Au collisions at √sNN = 200A GeV from an event-by-event (3 + 1) d transport+hydrodynamics hybrid approach is presented. As a response to the initial triangularity Ie{cyrillic, ukrainian}3 of the collision zone, ν3 is computed in a similar way to the standard event-plane analysis for elliptic flow ν2. It is found that the triangular flow exhibits weak centrality dependence and is roughly equal to elliptic flow in most central collisions. We also explore the transverse momentum and rapidity dependence of ν2 and ν3 for charged particles as well as identified particles. We conclude that an event-by-event treatment of the ideal hydrodynamic evolution startingwith realistic initial conditions generates the main features expected for triangular flow. © 2010 The American Physical Society.
Resumo:
An event memory is a mental construction of a scene recalled as a single occurrence. It therefore requires the hippocampus and ventral visual stream needed for all scene construction. The construction need not come with a sense of reliving or be made by a participant in the event, and it can be a summary of occurrences from more than one encoding. The mental construction, or physical rendering, of any scene must be done from a specific location and time; this introduces a "self" located in space and time, which is a necessary, but need not be a sufficient, condition for a sense of reliving. We base our theory on scene construction rather than reliving because this allows the integration of many literatures and because there is more accumulated knowledge about scene construction's phenomenology, behavior, and neural basis. Event memory differs from episodic memory in that it does not conflate the independent dimensions of whether or not a memory is relived, is about the self, is recalled voluntarily, or is based on a single encoding with whether it is recalled as a single occurrence of a scene. Thus, we argue that event memory provides a clearer contrast to semantic memory, which also can be about the self, be recalled voluntarily, and be from a unique encoding; allows for a more comprehensive dimensional account of the structure of explicit memory; and better accounts for laboratory and real-world behavioral and neural results, including those from neuropsychology and neuroimaging, than does episodic memory.
Resumo:
To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.
Resumo:
Subjective age--the age people think of themselves asbeing--is measured in a representative Danish sample of 1,470 adults between 20 and 97 years of age through personal, in-home interviews. On the average, adults younger than 25 have older subjective ages, and those older than 25 have younger subjective ages, favoring a lifespan-developmental view over an age-denial view of subjective age. When the discrepancy between subjective and chronological age is calculated as a proportion of chronological age, no increase is seen after age 40; older respondents feel 20% younger than their actual age. Demographic variables (gender, income, and education) account for very little variance in subjective age.
Resumo:
We introduce a new scale that measures how central an event is to a person's identity and life story. For the most stressful or traumatic event in a person's life, the full 20-item Centrality of Event Scale (CES) and the short 7-item scale are reliable (alpha's of .94 and .88, respectively) in a sample of 707 undergraduates. The scale correlates .38 with PTSD symptom severity and .23 with depression. The present findings are discussed in relation to previous work on individual differences related to PTSD symptoms. Possible connections between the CES and measures of maladaptive attributions and rumination are considered along with suggestions for future research.
Resumo:
The reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.