9 resultados para YEAST-CELLS

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fungal species Cryptococcus neoformans and Cryptococcus gattii cause respiratory and neurological disease in animals and humans following inhalation of basidiospores or desiccated yeast cells from the environment. Sexual reproduction in C. neoformans and C. gattii is controlled by a bipolar system in which a single mating type locus (MAT) specifies compatibility. These two species are dimorphic, growing as yeast in the asexual stage, and producing hyphae, basidia, and basidiospores during the sexual stage. In contrast, Filobasidiella depauperata, one of the closest related species, grows exclusively as hyphae and it is found in association with decaying insects. Examination of two available strains of F. depauperata showed that the life cycle of this fungal species shares features associated with the unisexual or same-sex mating cycle in C. neoformans. Therefore, F. depauperata may represent a homothallic and possibly an obligately sexual fungal species. RAPD genotyping of 39 randomly isolated progeny from isolate CBS7855 revealed a new genotype pattern in one of the isolated basidiospores progeny, therefore suggesting that the homothallic cycle in F. depauperata could lead to the emergence of new genotypes. Phylogenetic analyses of genes linked to MAT in C. neoformans indicated that two of these genes in F. depauperata, MYO2 and STE20, appear to form a monophyletic clade with the MATa alleles of C. neoformans and C. gattii, and thus these genes may have been recruited to the MAT locus before F. depauperata diverged. Furthermore, the ancestral MATa locus may have undergone accelerated evolution prior to the divergence of the pathogenic Cryptococcus species since several of the genes linked to the MATa locus appear to have a higher number of changes and substitutions than their MATalpha counterparts. Synteny analyses between C. neoformans and F. depauperata showed that genomic regions on other chromosomes displayed conserved gene order. In contrast, the genes linked to the MAT locus of C. neoformans showed a higher number of chromosomal translocations in the genome of F. depauperata. We therefore propose that chromosomal rearrangements appear to be a major force driving speciation and sexual divergence in these closely related pathogenic and saprobic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2016 Burnetti et al. Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization is important for the function and morphology of many different cell types. The keys regulators of polarity in eukaryotes are the Rho-family GTPases. In the budding yeast Saccharomyces cerevisiae, which must polarize in order to bud and to mate, the master regulator is the highly conserved Rho GTPase, Cdc42. During polarity establishment, active Cdc42 accumulates at a site on the plasma membrane characterizing the “front” of the cell where the bud will emerge. The orientation of polarization is guided by upstream cues that dictate the site of Cdc42 clustering. However, in the absence of upstream cues, yeast can still polarize in a random direction during symmetry breaking. Symmetry breaking suggests cells possess an autocatalytic polarization mechanism that can amplify stochastic fluctuations of polarity proteins through a positive feedback mechanism.

Two different positive feedback mechanisms have been proposed to polarize Cdc42 in budding yeast. One model posits that Cdc42 activation must be localized to a site at the plasma membrane. Another model posits that Cdc42 delivery must be localized to a particular site at the plasma membrane. Although both mechanisms could work in parallel to polarize Cdc42, it is unclear which mechanism is critical to polarity establishment. We directly tested the predictions of the two positive feedback models using genetics and live microscopy. We found that localized Cdc42 activation is necessary for polarity establishment.

While this explains how active Cdc42 localizes to a particular site at the plasma membrane, it does not address how Cdc42 concentrates at that site. Several different mechanisms have been proposed to concentrate Cdc42. The GDI can extract Cdc42 from membranes and selective mobilize GDP-Cdc42 in the cytoplasm. It was proposed that selectively mobilizing GDP-Cdc42 in combination with local activation could locally concentrate total Cdc42 at the polarity site. Although the GDI is important for rapid Cdc42 accumulation at the polarity site, it is not essential to Cdc42 concentration. It was proposed that delivery of Cdc42 by actin-mediated vesicle can act as a backup pathway to concentrate Cdc42. However, we found no evidence for an actin-dependent concentrating pathway. Live microscopy experiments reveal that prenylated proteins are not restricted to membranes, and can enter the cytoplasm. We found that the GDI-independent concentrating pathway still requires Cdc42 to exchange between the plasma membrane and the cytoplasm, which is supported by computational modeling. In the absence of the GDI, we found that Cdc42 GAP became essential for polarization. We propose that the GAP limits GTP-Cdc42 leak into the cytoplasm, which would be prohibitive to Cdc42 polarization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topoisomerase 1 (Top1), a Type IB topoisomerase, functions to relieve transcription- and replication-associated torsional stress in DNA. Top1 cleaves one strand of DNA, covalently associates with the 3’ end of the nick to form a Top1-cleavage complex (Top1cc), passes the intact strand through the nick and finally re-ligates the broken strand. The chemotherapeutic drug, Camptothecin, intercalates at a Top1cc and prevents the crucial re-ligation reaction that is mediated by Top1, resulting in the conversion of a nick to a toxic double-strand break during DNA replication or the accumulation of Top1cc. This mechanism of action preferentially targets rapidly dividing tumor cells, but can also affect non-tumor cells when patients undergo treatment. Additionally, Top1 is found to be elevated in numerous tumor tissues making it an attractive target for anticancer therapies. We investigated the effects of Top1 on genome stability, effects of persistent Top1-cleavage complexes and elevated Top1 levels, in Saccharomyces cerevisiae. We found that increased levels of the Top1cc resulted in a five- to ten-fold increase in reciprocal crossovers, three- to fifteen fold increase in mutagenesis and greatly increased instability within the rDNA and CUP1 tandem arrays. Increased Top1 levels resulted in a fifteen- to twenty-two fold increase in mutagenesis and increased instability in rDNA locus. These results have important implications for understanding the effects of CPT and elevated Top1 levels as a chemotherapeutic agent.