4 resultados para Wide area networks (Computer networks)
em Duke University
Resumo:
Human motion monitoring is an important function in numerous applications. In this dissertation, two systems for monitoring motions of multiple human targets in wide-area indoor environments are discussed, both of which use radio frequency (RF) signals to detect, localize, and classify different types of human motion. In the first system, a coherent monostatic multiple-input multiple-output (MIMO) array is used, and a joint spatial-temporal adaptive processing method is developed to resolve micro-Doppler signatures at each location in a wide-area for motion mapping. The downranges are obtained by estimating time-delays from the targets, and the crossranges are obtained by coherently filtering array spatial signals. Motion classification is then applied to each target based on micro-Doppler analysis. In the second system, multiple noncoherent multistatic transmitters (Tx's) and receivers (Rx's) are distributed in a wide-area, and motion mapping is achieved by noncoherently combining bistatic range profiles from multiple Tx-Rx pairs. Also, motion classification is applied to each target by noncoherently combining bistatic micro-Doppler signatures from multiple Tx-Rx pairs. For both systems, simulation and real data results are shown to demonstrate the ability of the proposed methods for monitoring patient repositioning activities for pressure ulcer prevention.
Resumo:
Twelve months of aerosol size distributions from 3 to 560nm, measured using scanning mobility particle sizers are presented with an emphasis on average number, surface, and volume distributions, and seasonal and diurnal variation. The measurements were made at the main sampling site of the Pittsburgh Air Quality Study from July 2001 to June 2002. These are supplemented with 5 months of size distribution data from 0.5 to 2.5μm measured with a TSI aerosol particle sizer and 2 months of size distributions measured at an upwind rural sampling site. Measurements at the main site were made continuously under both low and ambient relative humidity. The average Pittsburgh number concentration (3-500nm) is 22,000cm-3 with an average mode size of 40nm. Strong diurnal patterns in number concentrations are evident as a direct effect of the sources of particles (atmospheric nucleation, traffic, and other combustion sources). New particle formation from homogeneous nucleation is significant on 30-50% of study days and over a wide area (at least a hundred kilometers). Rural number concentrations are a factor of 2-3 lower (on average) than the urban values. Average measured distributions are different from model literature urban and rural size distributions. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
Resumo:
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.