2 resultados para Water quality monitoring stations

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.