3 resultados para Volatile Fatty-acids

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fatty acids in milk reflect the interplay between species-specific physiological mechanisms and maternal diet. Anthropoid primates (apes, Old and New World monkeys) vary in patterns of growth and development and dietary strategies. Milk fatty acid profiles also are predicted to vary widely. This study investigates milk fatty acid composition of five wild anthropoids (Alouatta palliata, Callithrix jacchus, Gorilla beringei beringei, Leontopithecus rosalia, Macaca sinica) to test the null hypothesis of a generalized anthropoid milk fatty acid composition. Milk from New and Old World monkeys had significantly more 8:0 and 10:0 than milk from apes. The leaf eating species G. b. beringei and A. paliatta had a significantly higher proportion of milk 18:3n-3, a fatty acid found primarily in plant lipids. Mean percent composition of 22:6n-3 was significantly different among monkeys and apes, but was similar to the lowest reported values for human milk. Mountain gorillas were unique among anthropoids in the high proportion of milk 20:4n-6. This seems to be unrelated to requirements of a larger brain and may instead reflect species-specific metabolic processes or an unknown source of this fatty acid in the mountain gorilla diet.