7 resultados para Vocal music
em Duke University
Resumo:
The affective impact of music arises from a variety of factors, including intensity, tempo, rhythm, and tonal relationships. The emotional coloring evoked by intensity, tempo, and rhythm appears to arise from association with the characteristics of human behavior in the corresponding condition; however, how and why particular tonal relationships in music convey distinct emotional effects are not clear. The hypothesis examined here is that major and minor tone collections elicit different affective reactions because their spectra are similar to the spectra of voiced speech uttered in different emotional states. To evaluate this possibility the spectra of the intervals that distinguish major and minor music were compared to the spectra of voiced segments in excited and subdued speech using fundamental frequency and frequency ratios as measures. Consistent with the hypothesis, the spectra of major intervals are more similar to spectra found in excited speech, whereas the spectra of particular minor intervals are more similar to the spectra of subdued speech. These results suggest that the characteristic affective impact of major and minor tone collections arises from associations routinely made between particular musical intervals and voiced speech.
Resumo:
Perceiving or producing complex vocalizations such as speech and birdsongs require the coordinated activity of neuronal populations, and these activity patterns can vary over space and time. How learned communication signals are represented by populations of sensorimotor neurons essential to vocal perception and production remains poorly understood. Using a combination of two-photon calcium imaging, intracellular electrophysiological recording and retrograde tracing methods in anesthetized adult male zebra finches (
Resumo:
Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds--songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65-300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.
Resumo:
Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.
Resumo:
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.
Resumo:
Very long-term memory for popular music was investigated. Older and younger adults listened to 20-sec excerpts of popular songs drawn from across the 20th century. The subjects gave emotionality and preference ratings and tried to name the title, artist, and year of popularity for each excerpt. They also performed a cued memory test for the lyrics. The older adults' emotionality ratings were highest for songs from their youth; they remembered more about these songs, as well. However, the stimuli failed to cue many autobiographical memories of specific events. Further analyses revealed that the older adults were less likely than the younger adults to retrieve multiple attributes of a song together (i.e., title and artist) and that there was a significant positive correlation between emotion and memory, especially for the older adults. These results have implications for research on long-term memory, as well as on the relationship between emotion and memory.
Resumo:
The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.