16 resultados para Visual and acoustic signaling
em Duke University
Resumo:
INTRODUCTION: Upper airway measurement can be important for the diagnosis of breathing disorders. Acoustic reflection (AR) is an accepted tool for studying the airway. Our objective was to investigate the differences between cone-beam computed tomography (CBCT) and AR in calculating airway volumes and areas. METHODS: Subjects with prescribed CBCT images as part of their records were also asked to have AR performed. A total of 59 subjects (mean age, 15 ± 3.8 years) had their upper airway (5 areas) measured from CBCT images, acoustic rhinometry, and acoustic pharyngometry. Volumes and minimal cross-sectional areas were extracted and compared with software. RESULTS: Intraclass correlation on 20 randomly selected subjects, remeasured 2 weeks apart, showed high reliability (r >0.77). Means of total nasal volume were significantly different between the 2 methods (P = 0.035), but anterior nasal volume and minimal cross-sectional area showed no differences (P = 0.532 and P = 0.066, respectively). Pharyngeal volume showed significant differences (P = 0.01) with high correlation (r = 0.755), whereas pharyngeal minimal cross-sectional area showed no differences (P = 0.109). The pharyngeal volume difference may not be considered clinically significant, since it is 758 mm3 for measurements showing means of 11,000 ± 4000 mm3. CONCLUSIONS: CBCT is an accurate method for measuring anterior nasal volume, nasal minimal cross-sectional area, pharyngeal volume, and pharyngeal minimal cross-sectional area.
Resumo:
Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior.
Resumo:
Animals must coordinate development with fluctuating nutrient availability. Nutrient availability governs post-embryonic development in Caenorhabditis elegans: larvae that hatch in the absence of food do not initiate post-embryonic development but enter "L1 arrest" (or "L1 diapause") and can survive starvation for weeks, while rapidly resume normal development once get fed. Insulin-like signaling (IIS) has been shown to be a key regulator of L1 arrest and recovery. However, the C. elegans genome encodes 40 insulin-like peptides (ILPs), and it is unknown which peptides participate in nutritional control of L1 arrest and recovery. Work in other contexts has identified putative receptor agonists and antagonists, but the extent of specificity versus redundancy is unclear beyond this distinction.
We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified 13 candidate agonists and 8 candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists was largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in systemic control of L1 development. Transcriptional regulation of candidate agonists was most significant in the intestine, as if nutrient uptake was a more important influence on transcription than sensory perception. Scanning in the 5' upstream promoter region of these 40 ILPs, We found that transcription factor PQM-1 and GATA putative binding sites are depleted in the promoter region of antagonists. A novel motif was also found to be over-represented in ILPs.
Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 recovery/developmental dynamics, though simultaneous disruption of ins-4 and daf-28 extended survival of L1 arrest without enhancing thermal tolerance, while overexpression of ins-4, ins-6 or daf-28 shortened L1 survival. Simultaneous disruption of several ILPs showed a temperature independent, transient dauer phenotype. These results revealed the relative redundancy and specificity among agonistic ILPs.
TGF- β and steroid hormone (SH) signaling have been reported to control the dauer formation along with IIS. Our preliminary results suggest they may also mediate the IIS control of L1 arrest and recovery, as the expression of several key components of TGF-β and SH signaling pathway genes are negatively regulated by DAF-16, and loss-of-function of these genes partially represses daf-16 null phenotype in L1 arrest, and causes a retardation in L1 development.
In summary, my dissertation study focused on the IIS, characterized the dynamics and sites of ILPs expression in response to nutrient availability, revealed the function of specific agonistic ILPs in L1 arrest, and suggested potential cross-regulation among IIS, TGF-β signaling and SH signaling in controlling L1 arrest and recovery. These findings provide insights into how post-embryonic development is governed by insulin-like signaling and nutrient availability.
Resumo:
-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the present study, we investigated effects of beta2AR stimulation on contraction, [Ca2+]i transient, and L-type Ca2+ currents (ICa) in single ventricular myocytes isolated from transgenic mice overexpressing human beta2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous beta2AR activation. In contrast, beta2AR stimulation by zinterol or isoproterenol plus a selective beta1-adrenergic receptor (beta1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, beta2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the ICa, [Ca2+]i, and contractile responses to beta2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac beta2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced beta2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [gamma-32P]GTP azidoanilide into alpha subunits of Gi2 and Gi3 after beta2AR stimulation by zinterol or isoproterenol plus the beta1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective beta2AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) beta2ARs in murine cardiac myocytes couple to concurrent Gs and Gi signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to beta2AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of beta2AR-coupled Gi proteins; and (3) spontaneous beta2AR activation may differ from agonist-stimulated beta2AR signaling.
Resumo:
beta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.
Resumo:
BACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.
Resumo:
This dissertation centers on the relationship between art and politics in postwar Central America as materialized in the specific issues of racial and gendered violence that derive from the region's geopolitical location and history. It argues that the decade of the 1990s marks a moment of change in the region's cultural infrastructure, both institutionally and conceptually, in which artists seek a new visual language of experimental art practices to articulate and conceptualize a critical understanding of place, experience and knowledge. It posits that visual and conceptual manifestations of violence in Central American performance, conceptual art and installation extend beyond a critique of the state, and beyond the scope of political parties in perpetuating violent circumstances in these countries. It argues that instead artists use experimental practices in art to locate manifestations of racial violence in an historical system of domination and as a legacy of colonialism still witnessed, lived, and learned by multiple subjectivities in the region. In this postwar period artists move beyond the cold-war rhetoric of the previous decades and instead root the current social and political injustices in what Aníbal Quijano calls the `coloniality of power.' Through an engagement of decolonial methodologies, this dissertation challenges the label "political art" in Central America and offers what I call "visual disobedience" as a response to the coloniality of seeing. I posit that visual colonization is yet another aspect of the coloniality of power and indispensable to projects of decolonization. It offers an analysis of various works to show how visual disobedience responds specifically to racial and gender violence and the equally violent colonization of visuality in Mesoamerica. Such geopolitical critiques through art unmask themes specific to life and identity in contemporary Central America, from indigenous genocide, femicide, transnational gangs, to mass imprisonments and a new wave of social cleansing. I propose that Central American artists--beyond an anti-colonial stance--are engaging in visual disobedience so as to construct decolonial epistemologies in art, through art, and as art as decolonial gestures for healing.
Resumo:
Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.
Resumo:
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway.
Resumo:
As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability,” quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.
Resumo:
As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability," quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.
Resumo:
TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not only increased TRPV4-inhibitory potency, but surprisingly also generated two compounds that potently co-inhibit TRPA1, known to function as chemical sensor of noxious and irritant signaling. We demonstrate TRPV4 inhibition by these compounds in primary cells with known TRPV4 expression - articular chondrocytes and astrocytes. Importantly, our novel compounds attenuate pain behavior in a trigeminal irritant pain model that is known to rely on TRPV4 and TRPA1. Furthermore, our novel dual-channel blocker inhibited inflammation and pain-associated behavior in a model of acute pancreatitis - known to also rely on TRPV4 and TRPA1. Our results illustrate proof of a novel concept inherent in our prototype compounds of a drug that targets two functionally-related TRP channels, and thus can be used to combat isoforms of pain and inflammation in-vivo that involve more than one TRP channel. This approach could provide a novel paradigm for treating other relevant health conditions.
Resumo:
Our group has pioneered the development of a live-attenuated poliovirus, called PVSRIPO, for the purpose of targeting cancer. Despite clinical progress, the cancer selective cytotoxicity and immunotherapeutic potential of PVSRIPO has not yet been mechanistically dissected. Defining such mechanisms may inform its clinical application.
Herein I describe the discovery of a mechanism by which the MAP-Kinase Interacting Kinases (MNKs) regulate PVSRIPO cytotoxicity in cancer. In doing so, I delineate a novel, intricate network connecting the MNK and mTOR signaling pathway that regulates activity of a splicing kinase called the Ser-Arg Rich Protein Kinase (SRPK), and define SRPK as an impediment to IRES mediated translation. Moreover, I demonstrate that MNK regulates mTORC1 associations that determine its substrate proximity and thus, activity. In a collaborative effort, we found that PVSRIPO oncolysis produces antigen specific, cytolytic anti-tumor immunity in an in vitro human system and that much of the observed adjuvancy is due to the direct infection of dendritic cells (DCs) by the virus itself; implicating PVSRIPO as a potent adjuvant. In summary, oncogenic signaling in part through MNK leads to cancer specific cytotoxicity by PVSRIPO that engages an inflammatory environment conducive to DC activation and antigen specific T cell antigen immunity.
Resumo:
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.
This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.
Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.
Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.