6 resultados para Veja and biased

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. RESULTS: Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. CONCLUSION: We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Individuals without prior immunity to a vaccine vector may be more sensitive to reactions following injection, but may also show optimal immune responses to vaccine antigens. To assess safety and maximal tolerated dose of an adenoviral vaccine vector in volunteers without prior immunity, we evaluated a recombinant replication-defective adenovirus type 5 (rAd5) vaccine expressing HIV-1 Gag, Pol, and multiclade Env proteins, VRC-HIVADV014-00-VP, in a randomized, double-blind, dose-escalation, multicenter trial (HVTN study 054) in HIV-1-seronegative participants without detectable neutralizing antibodies (nAb) to the vector. As secondary outcomes, we also assessed T-cell and antibody responses. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers received one dose of vaccine at either 10(10) or 10(11) adenovector particle units, or placebo. T-cell responses were measured against pools of global potential T-cell epitope peptides. HIV-1 binding and neutralizing antibodies were assessed. Systemic reactogenicity was greater at the higher dose, but the vaccine was well tolerated at both doses. Although no HIV infections occurred, commercial diagnostic assays were positive in 87% of vaccinees one year after vaccination. More than 85% of vaccinees developed HIV-1-specific T-cell responses detected by IFN-γ ELISpot and ICS assays at day 28. T-cell responses were: CD8-biased; evenly distributed across the three HIV-1 antigens; not substantially increased at the higher dose; and detected at similar frequencies one year following injection. The vaccine induced binding antibodies against at least one HIV-1 Env antigen in all recipients. CONCLUSIONS/SIGNIFICANCE: This vaccine appeared safe and was highly immunogenic following a single dose in human volunteers without prior nAb against the vector. TRIAL REGISTRATION: ClinicalTrials.gov NCT00119873.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kidney's major role in filtration depends on its high blood flow, concentrating mechanisms, and biochemical activation. The kidney's greatest strengths also lead to vulnerability for drug-induced nephrotoxicity and other renal injuries. The current standard to diagnose renal injuries is with a percutaneous renal biopsy, which can be biased and insufficient. In one particular case, biopsy of a kidney with renal cell carcinoma can actually initiate metastasis. Tools that are sensitive and specific to detect renal disease early are essential, especially noninvasive diagnostic imaging. While other imaging modalities (ultrasound and x-ray/CT) have their unique advantages and disadvantages, MRI has superb soft tissue contrast without ionizing radiation. More importantly, there is a richness of contrast mechanisms in MRI that has yet to be explored and applied to study renal disease.

The focus of this work is to advance preclinical imaging tools to study the structure and function of the renal system. Studies were conducted in normal and disease models to understand general renal physiology as well as pathophysiology. This dissertation is separated into two parts--the first is the identification of renal architecture with ex vivo MRI; the second is the characterization of renal dynamics and function with in vivo MRI. High resolution ex vivo imaging provided several opportunities including: 1) identification of fine renal structures, 2) implementation of different contrast mechanisms with several pulse sequences and reconstruction methods, 3) development of image-processing tools to extract regions and structures, and 4) understanding of the nephron structures that create MR contrast and that are important for renal physiology. The ex vivo studies allowed for understanding and translation to in vivo studies. While the structure of this dissertation is organized by individual projects, the goal is singular: to develop magnetic resonance imaging biomarkers for renal system.

The work presented here includes three ex vivo studies and two in vivo studies:

1) Magnetic resonance histology of age-related nephropathy in sprague dawley.

2) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.

3) Susceptibility tensor imaging of the kidney and its microstructural underpinnings.

4) 4D MRI of renal function in the developing mouse.

5) 4D MRI of polycystic kidneys in rapamycin treated Glis3-deficient mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: While effective population size (Ne) and life history traits such as generation time are known to impact substitution rates, their potential effects on base composition evolution are less well understood. GC content increases with decreasing body mass in mammals, consistent with recombination-associated GC biased gene conversion (gBGC) more strongly impacting these lineages. However, shifts in chromosomal architecture and recombination landscapes between species may complicate the interpretation of these results. In birds, interchromosomal rearrangements are rare and the recombination landscape is conserved, suggesting that this group is well suited to assess the impact of life history on base composition. RESULTS: Employing data from 45 newly and 3 previously sequenced avian genomes covering a broad range of taxa, we found that lineages with large populations and short generations exhibit higher GC content. The effect extends to both coding and non-coding sites, indicating that it is not due to selection on codon usage. Consistent with recombination driving base composition, GC content and heterogeneity were positively correlated with the rate of recombination. Moreover, we observed ongoing increases in GC in the majority of lineages. CONCLUSIONS: Our results provide evidence that gBGC may drive patterns of nucleotide composition in avian genomes and are consistent with more effective gBGC in large populations and a greater number of meioses per unit time; that is, a shorter generation time. Thus, in accord with theoretical predictions, base composition evolution is substantially modulated by species life history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala-calcarine (P=0.01) and amygdala-thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala-ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma.