6 resultados para Vc
em Duke University
Resumo:
Exposing individuals to an isolated component (a prime) of a prior event alleviates its forgetting. Two experiments with 120 human infants between 3 and 18 months of age determined the minimum duration of a prime that can reactivate a forgotten memory and how long the reactivated memory persists. Infants learned an operant task, forgot it, were exposed to the prime, and later were tested for renewed retention. In Experiment 1, the minimum duration of an effective prime decreased logarithmically with age, but was always longer than the duration of a mere glance. In Experiment 2, the reactivated memory was forgotten twice as fast after a minimum-duration prime as after a full-length one, irrespective of priming delay and infant age. These data reveal that the minimum effective prime duration psychophysically equates the accessibility of forgotten memories. We conclude that priming is perceptually based with effects that are organized on a ratio (log) scale.
Resumo:
CD8+ T cells are associated with long term control of virus replication to low or undetectable levels in a population of HIV+ therapy-naïve individuals known as virus controllers (VCs; <5000 RNA copies/ml and CD4+ lymphocyte counts >400 cells/µl). These subjects' ability to control viremia in the absence of therapy makes them the gold standard for the type of CD8+ T-cell response that should be induced with a vaccine. Studying the regulation of CD8+ T cells responses in these VCs provides the opportunity to discover mechanisms of durable control of HIV-1. Previous research has shown that the CD8+ T cell population in VCs is heterogeneous in its ability to inhibit virus replication and distinct T cells are responsible for virus inhibition. Further defining both the functional properties and regulation of the specific features of the select CD8+ T cells responsible for potent control of viremia the in VCs would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies.
Here we discuss the progress made in elucidating the features and regulation of CD8+ T cell response in virus controllers. We first detail the development of assays to quantify CD8+ T cells' ability to inhibit virus replication. This includes the use of a multi-clade HIV-1 panel which can subsequently be used as a tool for evaluation of T cell directed vaccines. We used these assays to evaluate the CD8+ response among cohorts of HIV-1 seronegative, HIV-1 acutely infected, and HIV-1 chronically infected (both VC and chronic viremic) patients. Contact and soluble CD8+ T cell virus inhibition assays (VIAs) are able to distinguish these patient groups based on the presence and magnitude of the responses. When employed in conjunction with peptide stimulation, the soluble assay reveals peptide stimulation induces CD8+ T cell responses with a prevalence of Gag p24 and Nef specificity among the virus controllers tested. Given this prevalence, we aimed to determine the gene expression profile of Gag p24-, Nef-, and unstimulated CD8+ T cells. RNA was isolated from CD8+ T-cells from two virus controllers with strong virus inhibition and one seronegative donor after a 5.5 hour stimulation period then analyzed using the Illumina Human BeadChip platform (Duke Center for Human Genome Variation). Analysis revealed that 565 (242 Nef and 323 Gag) genes were differentially expressed in CD8+ T-cells that were able to inhibit virus replication compared to those that could not. We compared the differentially expressed genes to published data sets from other CD8+ T-cell effector function experiments focusing our analysis on the most recurring genes with immunological, gene regulatory, apoptotic or unknown functions. The most commonly identified gene in these studies was TNFRSF9. Using PCR in a larger cohort of virus controllers we confirmed the up-regulation of TNFRSF9 in Gag p24 and Nef-specific CD8+ T cell mediated virus inhibition. We also observed increase in the mRNA encoding antiviral cytokines macrophage inflammatory proteins (MIP-1α, MIP-1αP, MIP-1β), interferon gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), and recently identified lymphotactin (XCL1).
Our previous work suggests the CD8+ T-cell response to HIV-1 can be regulated at the level of gene regulation. Because RNA abundance is modulated by transcription of new mRNAs and decay of new and existing RNA we aimed to evaluate the net rate of transcription and mRNA decay for the cytokines we identified as differentially regulated. To estimate rate of mRNA synthesis and decay, we stimulated isolated CD8+ T-cells with Gag p24 and Nef peptides adding 4-thiouridine (4SU) during the final hour of stimulation, allowing for separation of RNA made during the final hour of stimulation. Subsequent PCR of RNA isolated from these cells, allowed us to determine how much mRNA was made for our genes of interest during the final hour which we used to calculate rate of transcription. To assess if stimulation caused a change in RNA stability, we calculated the decay rates of these mRNA over time. In Gag p24 and Nef stimulated T cells , the abundance of the mRNA of many of the cytokines examined was dependent on changes in both transcription and mRNA decay with evidence for potential differences in the regulation of mRNA between Nef and Gag specific CD8+ T cells. The results were highly reproducible in that in one subject that was measured in three independent experiments the results were concordant.
This data suggests that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells by enabling rapid recall of anti-HIV-1 effector functions, namely the production and increased stability of antiviral cytokines. We have started to uncover the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, in turn, enhancing our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.
Resumo:
OBJECTIVE: To characterize B-cell subsets in patients with muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). METHODS: In accordance with Human Immunology Project Consortium guidelines, we performed polychromatic flow cytometry and ELISA assays in peripheral blood samples from 18 patients with MuSK MG and 9 healthy controls. To complement a B-cell phenotype assay that evaluated maturational subsets, we measured B10 cell percentages, plasma B cell-activating factor (BAFF) levels, and MuSK antibody titers. Immunologic variables were compared with healthy controls and clinical outcome measures. RESULTS: As expected, patients treated with rituximab had high percentages of transitional B cells and plasmablasts and thus were excluded from subsequent analysis. The remaining patients with MuSK MG and controls had similar percentages of total B cells and naïve, memory, isotype-switched, plasmablast, and transitional B-cell subsets. However, patients with MuSK MG had higher BAFF levels and lower percentages of B10 cells. In addition, we observed an increase in MuSK antibody levels with more severe disease. CONCLUSIONS: We found prominent B-cell pathology in the distinct form of MG with MuSK autoantibodies. Increased BAFF levels have been described in other autoimmune diseases, including acetylcholine receptor antibody-positive MG. This finding suggests a role for BAFF in the survival of B cells in MuSK MG, which has important therapeutic implications. B10 cells, a recently described rare regulatory B-cell subset that potently blocks Th1 and Th17 responses, were reduced, which suggests a potential mechanism for the breakdown in immune tolerance in patients with MuSK MG.
Resumo:
Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.
Resumo:
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.