3 resultados para Variables 0 - 1
em Duke University
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961–2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p < 0.01) decrease in annual streamflow, a significant positive trend in annual potential evapotranspiration (p < 0.01), and an insignificant (p > 0.1) negative trend in annual precipitation during 1961–2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann–Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s). We conclude that future climate change and variability will further challenge the water supply capacity of the Miyun Reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.
Resumo:
BACKGROUND: Curcumin is a natural product that is often explored by patients with cancer. Weight loss due to fat and muscle depletion is a hallmark of pancreatic cancer and is associated with worse outcomes. Studies of curcumin's effects on muscularity show conflicting results in animal models. METHODS AND RESULTS: Retrospective matched 1:2 case-control study to evaluate the effects of curcumin on body composition (determined by computerized tomography) of 66 patients with advanced pancreatic cancer (22 treated,44 controls). Average age (SEM) was 63(1.8) years, 30/66(45%) women, median number of prior therapies was 2, median (IQR) time from advanced pancreatic cancer diagnosis to baseline image was 7(2-13.5) months (p>0.2, all variables). All patients lost weight (3.3% and 1.3%, treated vs. control, p=0.13). Treated patients lost more muscle (median [IQR] percent change -4.8[-9.1,-0.1] vs. -0.05%[-4.2, 2.6] in controls,p<0.001) and fat (median [IQR] percent change -6.8%[-15,-0.6] vs. -4.0%[-7.6, 1.3] in controls,p=0.04). Subcutaneous fat was more affected in the treated patients. Sarcopenic patients treated with curcumin(n=15) had survival of 169(115-223) days vs. 299(229-369) sarcopenic controls(p=0.024). No survival difference was found amongst non-sarcopenic patients. CONCLUSIONS: Patients with advanced pancreatic cancer treated with curcumin showed significantly greater loss of subcutaneous fat and muscle than matched untreated controls.