10 resultados para Variability of Response
em Duke University
Resumo:
© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (I
Resumo:
Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social-cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions.
Resumo:
The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM1-concentrations are encountered in a coastal and rural area: <5000cm-3 and 6μgm-3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM>1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160000cm-3 (traffic intensity 100000vehday-1). Peak values occur in tunnels where numbers exceed 106cm-3. Enhanced PM1 levels (i.e. larger than 9μgm-3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM>1 appear rather uniformly distributed (below 6μgm-3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×103cm-3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100nm). It is further indicated that people residing at some 100m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Although the underlying mechanics of autobiographical memory may be identical across cultures, the processing of information differs. Undergraduates from Japan, Turkey, and the USA rated 30 autobiographical memories on 15 phenomenological and cognitive properties. Mean values were similar across cultures, with means from the Japanese sample being lower on most measures but higher on belief in the accuracy of their memories. Correlations within individuals were also similar across cultures, with correlations from the Turkish sample being higher between measures of language and measures of recollection and belief. For all three cultures, in multiple regression analyses, measures of recollection were predicted by visual imagery, auditory imagery, and emotions, whereas measures of belief were predicted by knowledge of the setting. These results show subtle cultural differences in the experience of remembering.
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options.
Resumo:
Assays that assess cellular mediated immune responses performed under Good Clinical Laboratory Practice (GCLP) guidelines are required to provide specific and reproducible results. Defined validation procedures are required to establish the Standard Operating Procedure (SOP), include pass and fail criteria, as well as implement positivity criteria. However, little to no guidance is provided on how to perform longitudinal assessment of the key reagents utilized in the assay. Through the External Quality Assurance Program Oversight Laboratory (EQAPOL), an Interferon-gamma (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot) assay proficiency testing program is administered. A limit of acceptable within site variability was estimated after six rounds of proficiency testing (PT). Previously, a PT send-out specific within site variability limit was calculated based on the dispersion (variance/mean) of the nine replicate wells of data. Now an overall 'dispersion limit' for the ELISpot PT program within site variability has been calculated as a dispersion of 3.3. The utility of this metric was assessed using a control sample to calculate the within (precision) and between (accuracy) experiment variability to determine if the dispersion limit could be applied to bridging studies (studies that assess lot-to-lot variations of key reagents) for comparing the accuracy of results with new lots to results with old lots. Finally, simulations were conducted to explore how this dispersion limit could provide guidance in the number of replicate wells needed for within and between experiment variability and the appropriate donor reactivity (number of antigen-specific cells) to be used for the evaluation of new reagents. Our bridging study simulations indicate using a minimum of six replicate wells of a control donor sample with reactivity of at least 150 spot forming cells per well is optimal. To determine significant lot-to-lot variations use the 3.3 dispersion limit for between and within experiment variability.
Resumo:
The variability of summer precipitation in the southeastern United States is examined in this study using 60-yr (1948-2007) rainfall data. The Southeast summer rainfalls exhibited higher interannual variability with more intense summer droughts and anomalous wetness in the recent 30 years (1978-2007) than in the prior 30 years (1948-77). Such intensification of summer rainfall variability was consistent with a decrease of light (0.1-1 mm day-1) and medium (1-10 mm day-1) rainfall events during extremely dry summers and an increase of heavy (.10 mm day-1) rainfall events in extremely wet summers. Changes in rainfall variability were also accompanied by a southward shift of the region of maximum zonal wind variability at the jet stream level in the latter period. The covariability between the Southeast summer precipitation and sea surface temperatures (SSTs) is also analyzed using the singular value decomposition (SVD) method. It is shown that the increase of Southeast summer precipitation variability is primarily associated with a higher SST variability across the equatorial Atlantic and also SST warming in the Atlantic. © 2010 American Meteorological Society.
Resumo:
Systemic challenges within child welfare have prompted many states to explore new strategies aimed at protecting children while meeting the needs of families, but doing so within the confines of shrinking budgets. Differential Response has emerged as a promising practice for low or moderate risk cases of child maltreatment. This mixed methods evaluation explored various aspects of North Carolina's differential response system, known as the Multiple Response System (MRS), including: child safety, timeliness of response and case decision, frontloading of services, case distribution, implementation of Child and Family Teams, collaboration with community-based service providers and Shared Parenting. Utilizing Child Protective Services (CPS) administrative data, researchers found that compared to matched control counties, MRS: had a positive impact on child safety evidenced by a decline in the rates of substantiations and re-assessments; temporarily disrupted timeliness of response in pilot counties but had no effect on time to case decision; and increased the number of upfront services provided to families during assessment. Qualitative data collected through focus groups with providers and phone interviews with families provided important information on key MRS strategies, highlighting aspects that families and social workers like as well as identifying areas for improvement. This information is useful for continuous quality improvement efforts, particularly related to the development of training and technical assistance programs at the state and local level.
Resumo:
Periods of drought and low streamflow can have profound impacts on both human and natural systems. People depend on a reliable source of water for numerous reasons including potable water supply and to produce economic value through agriculture or energy production. Aquatic ecosystems depend on water in addition to the economic benefits they provide to society through ecosystem services. Given that periods of low streamflow may become more extreme and frequent in the future, it is important to study the factors that control water availability during these times. In the absence of precipitation the slower hydrological response of groundwater systems will play an amplified role in water supply. Understanding the variability of the fraction of streamflow contribution from baseflow or groundwater during periods of drought provides insight into what future water availability may look like and how it can best be managed. The Mills River Basin in North Carolina is chosen as a case-study to test this understanding. First, obtaining a physically meaningful estimation of baseflow from USGS streamflow data via computerized hydrograph analysis techniques is carried out. Then applying a method of time series analysis including wavelet analysis can highlight signals of non-stationarity and evaluate the changes in variance required to better understand the natural variability of baseflow and low flows. In addition to natural variability, human influence must be taken into account in order to accurately assess how the combined system reacts to periods of low flow. Defining a combined demand that consists of both natural and human demand allows us to be more rigorous in assessing the level of sustainable use of a shared resource, in this case water. The analysis of baseflow variability can differ based on regional location and local hydrogeology, but it was found that baseflow varies from multiyear scales such as those associated with ENSO (3.5, 7 years) up to multi decadal time scales, but with most of the contributing variance coming from decadal or multiyear scales. It was also found that the behavior of baseflow and subsequently water availability depends a great deal on overall precipitation, the tracks of hurricanes or tropical storms and associated climate indices, as well as physiography and hydrogeology. Evaluating and utilizing the Duke Combined Hydrology Model (DCHM), reasonably accurate estimates of streamflow during periods of low flow were obtained in part due to the model’s ability to capture subsurface processes. Being able to accurately simulate streamflow levels and subsurface interactions during periods of drought can be very valuable to water suppliers, decision makers, and ultimately impact citizens. Knowledge of future droughts and periods of low flow in addition to tracking customer demand will allow for better management practices on the part of water suppliers such as knowing when they should withdraw more water during a surplus so that the level of stress on the system is minimized when there is not ample water supply.