2 resultados para Utility-based performance measures

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review literature on several types of energy efficiency policies: appliance standards, financial incentive programs, information and voluntary programs, and management of government energy use. For each, we provide a brief synopsis of the relevant programs, along with available existing estimates of energy savings, costs, and cost-effectiveness at a national level. The literature examining these estimates points to potential issues in determining the energy savings and costs, but recent evidence suggests that techniques for measuring both have improved. Taken together, the literature identifies up to four quads of energy savings annually from these programs - at least half of which is attributable to appliance standards and utility-based demand-side management, with possible additional energy savings from the U.S. Department of Energy's (DOE's) ENERGY STAR, Climate Challenge, and Section 1605b voluntary programs to reduce carbon dioxide (CO 2) emissions. Related reductions in CO 2 and criteria air pollutants may contribute an additional 10% to the value of energy savings above the price of energy itself. Copyright © 2006 by Annual Reviews. All rights reserved.