8 resultados para Urinary Tract.
em Duke University
Resumo:
Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs), has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that the K antigen capsule of E. coli is a preeminent virulence determinant during UTI and more invasive diseases. Components of assembly and export are highly conserved among the major K antigen capsular types associated with UTI-causing E. coli and are distinct from the capsule biogenesis machinery of many commensal E. coli, making these attractive therapeutic targets. We conducted a screen for anti-capsular small molecules and identified an agent designated "C7" that blocks the production of K1 and K5 capsules, unrelated polysaccharide types among the Group 2-3 capsules. Herein lies proof-of-concept that this screen may be implemented with larger chemical libraries to identify second-generation small-molecule inhibitors of capsule biogenesis. These inhibitors will lead to a better understanding of capsule biogenesis and may represent a new class of therapeutics.
Resumo:
OBJECTIVE: Historically, management of infants with fever without localizing signs (FWLS) has generated much controversy, with attempts to risk stratify based on several criteria. Advances in medical practice may have altered the epidemiology of serious bacterial infections (SBIs) in this population. We conducted this study to test the hypothesis that the rate of SBIs in this patient population has changed over time. PATIENTS AND METHODS: We performed a retrospective review of all infants meeting FWLS criteria at our institution from 1997-2006. We examined all clinical and outcome data and performed statistical analysis of SBI rates and ampicillin resistance rates. RESULTS: 668 infants met criteria for FWLS. The overall rate of SBIs was 10.8%, with a significant increase from 2002-2006 (52/361, 14.4%) compared to 1997-2001 (20/307, 6.5%) (p = 0.001). This increase was driven by an increase in E. coli urinary tract infections (UTI), particularly in older infants (31-90 days). CONCLUSIONS: We observed a significant increase in E. coli UTI among FWLS infants with high rates of ampicillin resistance. The reasons are likely to be multifactorial, but the results themselves emphasize the need to examine urine in all febrile infants <90 days and consider local resistance patterns when choosing empiric antibiotics.
Resumo:
BACKGROUND: Enhanced recovery after surgery (ERAS) is a multimodal approach to perioperative care that combines a range of interventions to enable early mobilization and feeding after surgery. We investigated the feasibility, clinical effectiveness, and cost savings of an ERAS program at a major U. S. teaching hospital. METHODS: Data were collected from consecutive patients undergoing open or laparoscopic colorectal surgery during 2 time periods, before and after implementation of an ERAS protocol. Data collected included patient demographics, operative, and perioperative surgical and anesthesia data, need for analgesics, complications, inpatient medical costs, and 30-day readmission rates. RESULTS: There were 99 patients in the traditional care group, and 142 in the ERAS group. The median length of stay (LOS) was 5 days in the ERAS group compared with 7 days in the traditional group (P < 0.001). The reduction in LOS was significant for both open procedures (median 6 vs 7 days, P = 0.01), and laparoscopic procedures (4 vs 6 days, P < 0.0001). ERAS patients had fewer urinary tract infections (13% vs 24%, P = 0.03). Readmission rates were lower in ERAS patients (9.8% vs 20.2%, P = 0.02). DISCUSSION: Implementation of an enhanced recovery protocol for colorectal surgery at a tertiary medical center was associated with a significantly reduced LOS and incidence of urinary tract infection. This is consistent with that of other studies in the literature and suggests that enhanced recovery programs could be implemented successfully and should be considered in U.S. hospitals.
Resumo:
Urinary tract infections (UTIs) are typically caused by bacteria that colonize different regions of the urinary tract, mainly the bladder and the kidney. Approximately 25% of women that suffer from UTIs experience a recurrent infection within 6 months of the initial bout, making UTIs a serious economic burden resulting in more than 10 million hospital visits and $3.5 billion in healthcare costs in the United States alone. Type-1 fimbriated Uropathogenic E. coli (UPEC) is the major causative agent of UTIs, accounting for almost 90 % of bacterial UTIs. The unique ability of UPEC to bind and invade the superficial bladder epithelium allows the bacteria to persist inside epithelial niches and survive antibiotic treatment. Persistent, intracellular UPEC are retained in the bladder epithelium for long periods, making them a source of recurrent UTIs. Hence, the ability of UPEC to persist in the bladder is a matter of major health and economic concern, making studies exploring the underlying mechanism of UPEC persistence highly relevant.
In my thesis, I will describe how intracellular Uropathogenic E.coli (UPEC) evade host defense mechanisms in the superficial bladder epithelium. I will also describe some of the unique traits of persistent UPEC and explore strategies to induce their clearance from the bladder. I have discovered that the UPEC virulence factor Alpha-hemolysin (HlyA) plays a key role in the survival and persistence of UPEC in the superficial bladder epithelium. In-vitro and in-vivo studies comparing intracellular survival of wild type (WT) and hemolysin deficient UPEC suggested that HlyA is vital for UPEC persistence in the superficial bladder epithelium. Further in-vitro studies revealed that hemolysin helped UPEC persist intracellularly by evading the bacterial expulsion actions of the bladder cells and remarkably, this virulence factor also helped bacteria avoid t degradation in lysosomes.
To elucidate the mechanistic basis for how hemolysin promotes UPEC persistence in the urothelium, we initially focused on how hemolysin facilitates the evasion of UPEC expulsion from bladder cells. We found that upon entry, UPEC were encased in “exocytic vesicles” but as a result of HlyA expression these bacteria escaped these vesicles and entered the cytosol. Consequently, these bacteria were able to avoid expulsion by the cellular export machinery.
Since bacteria found in the cytosol of host cells are typically recognized by the cellular autophagy pathway and transported to the lysosomes where they are degraded, we explored why this was not the case here. We observed that although cytosolic HlyA expressing UPEC were recognized and encased by the autophagy system and transported to lysosomes, the bacteria appeared to avoid degradation in these normally degradative compartments. A closer examination of the bacteria containing lysosomes revealed that they lacked V-ATPase. V-ATPase is a well-known proton pump essential for the acidification of mammalian intracellular degradative compartments, allowing for the proper functioning of degradative proteases. The absence of V-ATPase appeared to be due to hemolysin mediated alteration of the bladder cell F-actin network. From these studies, it is clear that UPEC hemolysin facilitates UPEC persistence in the superficial bladder epithelium by helping bacteria avoid expulsion by the exocytic machinery of the cell and at the same time enabling the bacteria avoid degradation when the bacteria are shuttled into the lysosomes.
Interestingly even though UPEC appear to avoid elimination from the bladder cell their ability to multiple in bladder cells seem limited.. Indeed, our in-vitro and in-vivo experiments reveal that UPEC survive in superficial bladder epithelium for extended periods of time without a significantly change in CFU numbers. Indeed, we observed these bacteria appeared quiescent in nature. This observation was supported by the observation that UPEC genetically unable to enter a quiescence phase exhibited limited ability to persist in bladder cells in vitro and in vivo, in the mouse bladder.
The studies elucidated in this thesis reveal how UPEC toxin, Alpha-hemolysin plays a significant role in promoting UPEC persistence via the modulation of the vesicular compartmentalization of UPEC at two different stages of the infection in the superficial bladder epithelium. These results highlight the importance of UPEC Alpha-hemolysin as an essential determinant of UPEC persistence in the urinary bladder.
Resumo:
The high frequency of urinary tract infections (UTIs), some of which appear to be endogenous relapses rather than reinfections by new isolates, point to defects in the host's memory immune response. It has been known for many decades that, whereas kidney infections evoked an antibody response to the infecting bacteria, infections limited to the bladder failed to do so. We have identified the existence of a broadly immunosuppressive transcriptional program associated with the bladder, but not the kidneys, during infection of the urinary tract that is dependent on bladder mast cells. This involves the localized secretion of IL-10 and results in the suppression of humoral immune responses in the bladder. Mast cell-mediated immune suppression could suggest a role for these cells in critically balancing the needs to clear infections with the imperative to prevent harmful immune reactions in the host.
Resumo:
INTRODUCTION: The characterization of urinary calculi using noninvasive methods has the potential to affect clinical management. CT remains the gold standard for diagnosis of urinary calculi, but has not reliably differentiated varying stone compositions. Dual-energy CT (DECT) has emerged as a technology to improve CT characterization of anatomic structures. This study aims to assess the ability of DECT to accurately discriminate between different types of urinary calculi in an in vitro model using novel postimage acquisition data processing techniques. METHODS: Fifty urinary calculi were assessed, of which 44 had >or=60% composition of one component. DECT was performed utilizing 64-slice multidetector CT. The attenuation profiles of the lower-energy (DECT-Low) and higher-energy (DECT-High) datasets were used to investigate whether differences could be seen between different stone compositions. RESULTS: Postimage acquisition processing allowed for identification of the main different chemical compositions of urinary calculi: brushite, calcium oxalate-calcium phosphate, struvite, cystine, and uric acid. Statistical analysis demonstrated that this processing identified all stone compositions without obvious graphical overlap. CONCLUSION: Dual-energy multidetector CT with postprocessing techniques allows for accurate discrimination among the main different subtypes of urinary calculi in an in vitro model. The ability to better detect stone composition may have implications in determining the optimum clinical treatment modality for urinary calculi from noninvasive, preprocedure radiological assessment.
Resumo:
Selecting a suitable site to deposit their eggs is an important reproductive need of Drosophila females. Although their choosiness toward egg-laying sites is well documented, the specific neural mechanism that activates females' search for attractive egg-laying sites is not known. Here, we show that distention and contraction of females' internal reproductive tract triggered by egg delivery through the tract plays a critical role in activating such search. We found that females start to exhibit acetic acid (AA) attraction prior to depositing each egg but no attraction when they are not laying eggs. Artificially distending the reproductive tract triggers AA attraction in non-egg-laying females, whereas silencing the mechanosensitive neurons we identified that can sense the contractile status of the tract eliminates such attraction. Our work uncovers the circuit basis of an important reproductive need of Drosophila females and provides a simple model for dissecting the neural mechanism that underlies a reproductive need-induced behavioral modification.
Resumo:
© 2015 Chinese Nursing Association.Background Although self-management approaches have shown strong evidence of positive outcomes for urinary incontinence prevention and management, few programs have been developed for Korean rural communities. Objectives This pilot study aimed to develop, implement, and evaluate a urinary incontinence self-management program for community-dwelling women aged 55 and older with urinary incontinence in rural South Korea. Methods This study used a one-group pre- post-test design to measure the effects of the intervention using standardized urinary incontinence symptom, knowledge, and attitude measures. Seventeen community-dwelling older women completed weekly 90-min group sessions for 5 weeks. Descriptive statistics and paired t-tests and were used to analyze data. Results The mean of the overall interference on daily life from urine leakage (pre-test: M = 5.76 ± 2.68, post-test: M = 2.29 ± 1.93, t = -4.609, p < 0.001) and the sum of International Consultation on Incontinence Questionnaire scores (pre-test: M = 11.59 ± 3.00, post-test: M = 5.29 ± 3.02, t = -5.881, p < 0.001) indicated significant improvement after the intervention. Improvement was also noted on the mean knowledge (pre-test: M = 19.07 ± 3.34, post-test: M = 23.15 ± 2.60, t = 7.550, p < 0.001) and attitude scores (pre-test: M = 2.64 ± 0.19, post-test: M = 3.08 ± 0.41, t = 5.150, p < 0.001). Weekly assignments were completed 82.4% of the time. Participants showed a high satisfaction level (M = 26.82 ± 1.74, range 22-28) with the group program. Conclusions Implementation of a urinary incontinence self-management program was accompanied by improved outcomes for Korean older women living in rural communities who have scarce resources for urinary incontinence management and treatment. Urinary incontinence self-management education approaches have potential for widespread implementation in nursing practice.