3 resultados para United States. Army Space Program Office.
em Duke University
Resumo:
UNLABELLED: BACKGROUND: Primary care, an essential determinant of health system equity, efficiency, and effectiveness, is threatened by inadequate supply and distribution of the provider workforce. The Veterans Health Administration (VHA) has been a frontrunner in the use of nurse practitioners (NPs) and physician assistants (PAs). Evaluation of the roles and impact of NPs and PAs in the VHA is critical to ensuring optimal care for veterans and may inform best practices for use of PAs and NPs in other settings around the world. The purpose of this study was to characterize the use of NPs and PAs in VHA primary care and to examine whether their patients and patient care activities were, on average, less medically complex than those of physicians. METHODS: This is a retrospective cross-sectional analysis of administrative data from VHA primary care encounters between 2005 and 2010. Patient and patient encounter characteristics were compared across provider types (PA, NP, and physician). RESULTS: NPs and PAs attend about 30% of all VHA primary care encounters. NPs, PAs, and physicians fill similar roles in VHA primary care, but patients of PAs and NPs are slightly less complex than those of physicians, and PAs attend a higher proportion of visits for the purpose of determining eligibility for benefits. CONCLUSIONS: This study demonstrates that a highly successful nationwide primary care system relies on NPs and PAs to provide over one quarter of primary care visits, and that these visits are similar to those of physicians with regard to patient and encounter characteristics. These findings can inform health workforce solutions to physician shortages in the USA and around the world. Future research should compare the quality and costs associated with various combinations of providers and allocations of patient care work, and should elucidate the approaches that maximize quality and efficiency.
Resumo:
Chimpanzees are native only to the jungles of equatorial Africa, but for the last hundred years, they have also lived in captivity in the United States, most commonly in biomedical research laboratories, but also at Air Force bases for experiments for the space program, at accredited and unaccredited zoos, at circuses, as performers in Hollywood and even in private homes and backyards as pets. But that has been gradually evolving over the last few decades, as more and more chimpanzees move to newly-established chimpanzee sanctuaries. That transition was already underway even before the announcement by the National Institutes of Health (NIH) last year that it will retire all of its remaining chimpanzees from labs to sanctuaries. By thoroughly examining the evolution of these sanctuaries leading up to that seminal decision, along with the many challenges they face, including money, medical care, conflicting philosophies on the treatment of animals and the pitfalls that have led other sanctuaries to the brink of ruin, we can take away a better understanding of why chimpanzee sanctuaries are needed and why caretakers of other animal species are now looking to the chimpanzee sanctuary movement as a model to show how animals can be cared for in retirement.
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.