1 resultado para Ulm-Kaplansky invariants
em Duke University
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (11)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (43)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- DigitalCommons - The University of Maine Research (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (10)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (28)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (54)
- Glasgow Theses Service (2)
- Harvard University (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (20)
- National Center for Biotechnology Information - NCBI (1)
- Publishing Network for Geoscientific & Environmental Data (371)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (21)
- Universidade Técnica de Lisboa (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (14)
- Université de Montréal (4)
- Université de Montréal, Canada (24)
- University of Michigan (79)
- University of Queensland eSpace - Australia (62)
Resumo:
The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion
and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.