4 resultados para Two operation modes

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a study of the phase behavior of multiple-occupancy crystals through simulation. We argue that in order to reproduce the equilibrium behavior of such crystals it is essential to treat the number of lattice sites as a constraining thermodynamic variable. The resulting free-energy calculations thus differ considerably from schemes used for single-occupancy lattices. Using our approach, we obtain the phase diagram and the bulk modulus for a generalized exponential model that forms cluster crystals at high densities. We compare the simulation results with existing theoretical predictions. We also identify two types of density fluctuations that can lead to two sound modes and evaluate the corresponding elastic constants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock- and coherent-state wave packets, especially in the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light. © 2010 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limit-periodic (LP) structures exhibit a type of nonperiodic order yet to be found in a natural material. A recent result in tiling theory, however, has shown that LP order can spontaneously emerge in a two-dimensional (2D) lattice model with nearest-and next-nearest-neighbor interactions. In this dissertation, we explore the question of what types of interactions can lead to a LP state and address the issue of whether the formation of a LP structure in experiments is possible. We study emergence of LP order in three-dimensional (3D) tiling models and bring the subject into the physical realm by investigating systems with realistic Hamiltonians and low energy LP states. Finally, we present studies of the vibrational modes of a simple LP ball and spring model whose results indicate that LP materials would exhibit novel physical properties.

A 2D lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor interactions based on the Taylor-Socolar (TS) monotile is known to have a LP ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. Surprisingly, even when the strength of the next-nearest-neighbor interactions is zero, in which case there is a large degenerate class of both crystalline and LP ground states, a slow quench yields the LP state. The first study in this dissertation introduces 3D models closely related to the 2D models that exhibit LP phases. The particular 3D models were designed such that next-nearest-neighbor interactions of the TS type are implemented using only nearest-neighbor interactions. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case.

In the second study, we investigate systems with physical Hamiltonians based on one of the 2D tiling models with the goal of stimulating attempts to create a LP structure in experiments. We explore physically realizable particle designs while being mindful of particular features that may make the assembly of a LP structure in an experimental system difficult. Through Monte Carlo (MC) simulations, we have found that one particle design in particular is a promising template for a physical particle; a 2D system of identical disks with embedded dipoles is observed to undergo the series of phase transitions which leads to the LP state.

LP structures are well ordered but nonperiodic, and hence have nontrivial vibrational modes. In the third section of this dissertation, we study a ball and spring model with a LP pattern of spring stiffnesses and identify a set of extended modes with arbitrarily low participation ratios, a situation that appears to be unique to LP systems. The balls that oscillate with large amplitude in these modes live on periodic nets with arbitrarily large lattice constants. By studying periodic approximants to the LP structure, we present numerical evidence for the existence of such modes, and we give a heuristic explanation of their structure.