4 resultados para Trustees system service corporation.

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Outpatient palliative care, an evolving delivery model, seeks to improve continuity of care across settings and to increase access to services in hospice and palliative medicine (HPM). It can provide a critical bridge between inpatient palliative care and hospice, filling the gap in community-based supportive care for patients with advanced life-limiting illness. Low capacities for data collection and quantitative research in HPM have impeded assessment of the impact of outpatient palliative care. APPROACH: In North Carolina, a regional database for community-based palliative care has been created through a unique partnership between a HPM organization and academic medical center. This database flexibly uses information technology to collect patient data, entered at the point of care (e.g., home, inpatient hospice, assisted living facility, nursing home). HPM physicians and nurse practitioners collect data; data are transferred to an academic site that assists with analyses and data management. Reports to community-based sites, based on data they provide, create a better understanding of local care quality. CURRENT STATUS: The data system was developed and implemented over a 2-year period, starting with one community-based HPM site and expanding to four. Data collection methods were collaboratively created and refined. The database continues to grow. Analyses presented herein examine data from one site and encompass 2572 visits from 970 new patients, characterizing the population, symptom profiles, and change in symptoms after intervention. CONCLUSION: A collaborative regional approach to HPM data can support evaluation and improvement of palliative care quality at the local, aggregated, and statewide levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic challenges within child welfare have prompted many states to explore new strategies aimed at protecting children while meeting the needs of families, but doing so within the confines of shrinking budgets. Differential Response has emerged as a promising practice for low or moderate risk cases of child maltreatment. This mixed methods evaluation explored various aspects of North Carolina's differential response system, known as the Multiple Response System (MRS), including: child safety, timeliness of response and case decision, frontloading of services, case distribution, implementation of Child and Family Teams, collaboration with community-based service providers and Shared Parenting. Utilizing Child Protective Services (CPS) administrative data, researchers found that compared to matched control counties, MRS: had a positive impact on child safety evidenced by a decline in the rates of substantiations and re-assessments; temporarily disrupted timeliness of response in pilot counties but had no effect on time to case decision; and increased the number of upfront services provided to families during assessment. Qualitative data collected through focus groups with providers and phone interviews with families provided important information on key MRS strategies, highlighting aspects that families and social workers like as well as identifying areas for improvement. This information is useful for continuous quality improvement efforts, particularly related to the development of training and technical assistance programs at the state and local level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secure Access For Everyone (SAFE), is an integrated system for managing trust

using a logic-based declarative language. Logical trust systems authorize each

request by constructing a proof from a context---a set of authenticated logic

statements representing credentials and policies issued by various principals

in a networked system. A key barrier to practical use of logical trust systems

is the problem of managing proof contexts: identifying, validating, and

assembling the credentials and policies that are relevant to each trust

decision.

SAFE addresses this challenge by (i) proposing a distributed authenticated data

repository for storing the credentials and policies; (ii) introducing a

programmable credential discovery and assembly layer that generates the

appropriate tailored context for a given request. The authenticated data

repository is built upon a scalable key-value store with its contents named by

secure identifiers and certified by the issuing principal. The SAFE language

provides scripting primitives to generate and organize logic sets representing

credentials and policies, materialize the logic sets as certificates, and link

them to reflect delegation patterns in the application. The authorizer fetches

the logic sets on demand, then validates and caches them locally for further

use. Upon each request, the authorizer constructs the tailored proof context

and provides it to the SAFE inference for certified validation.

Delegation-driven credential linking with certified data distribution provides

flexible and dynamic policy control enabling security and trust infrastructure

to be agile, while addressing the perennial problems related to today's

certificate infrastructure: automated credential discovery, scalable

revocation, and issuing credentials without relying on centralized authority.

We envision SAFE as a new foundation for building secure network systems. We

used SAFE to build secure services based on case studies drawn from practice:

(i) a secure name service resolver similar to DNS that resolves a name across

multi-domain federated systems; (ii) a secure proxy shim to delegate access

control decisions in a key-value store; (iii) an authorization module for a

networked infrastructure-as-a-service system with a federated trust structure

(NSF GENI initiative); and (iv) a secure cooperative data analytics service

that adheres to individual secrecy constraints while disclosing the data. We

present empirical evaluation based on these case studies and demonstrate that

SAFE supports a wide range of applications with low overhead.