6 resultados para Tracts

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Blochmannia are obligately intracellular bacterial mutualists of ants of the tribe Camponotini. Blochmannia perform key nutritional functions for the host, including synthesis of several essential amino acids. We used Illumina technology to sequence the genome of Blochmannia associated with Camponotus vafer. RESULTS: Although Blochmannia vafer retains many nutritional functions, it is missing glutamine synthetase (glnA), a component of the nitrogen recycling pathway encoded by the previously sequenced B. floridanus and B. pennsylvanicus. With the exception of Ureaplasma, B. vafer is the only sequenced bacterium to date that encodes urease but lacks the ability to assimilate ammonia into glutamine or glutamate. Loss of glnA occurred in a deletion hotspot near the putative replication origin. Overall, compared to the likely gene set of their common ancestor, 31 genes are missing or eroded in B. vafer, compared to 28 in B. floridanus and four in B. pennsylvanicus. Three genes (queA, visC and yggS) show convergent loss or erosion, suggesting relaxed selection for their functions. Eight B. vafer genes contain frameshifts in homopolymeric tracts that may be corrected by transcriptional slippage. Two of these encode DNA replication proteins: dnaX, which we infer is also frameshifted in B. floridanus, and dnaG. CONCLUSIONS: Comparing the B. vafer genome with B. pennsylvanicus and B. floridanus refines the core genes shared within the mutualist group, thereby clarifying functions required across ant host species. This third genome also allows us to track gene loss and erosion in a phylogenetic context to more fully understand processes of genome reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During mitotic cell cycles, DNA experiences many types of endogenous and exogenous damaging agents that could potentially cause double strand breaks (DSB). In S. cerevisiae, DSBs are primarily repaired by mitotic recombination and as a result, could lead to loss-of-heterozygosity (LOH). Genetic recombination can happen in both meiosis and mitosis. While genome-wide distribution of meiotic recombination events has been intensively studied, mitotic recombination events have not been mapped unbiasedly throughout the genome until recently. Methods for selecting mitotic crossovers and mapping the positions of crossovers have recently been developed in our lab. Our current approach uses a diploid yeast strain that is heterozygous for about 55,000 SNPs, and employs SNP-Microarrays to map LOH events throughout the genome. These methods allow us to examine selected crossovers and unselected mitotic recombination events (crossover, noncrossover and BIR) at about 1 kb resolution across the genome. Using this method, we generated maps of spontaneous and UV-induced LOH events. In this study, we explore machine learning and variable selection techniques to build a predictive model for where the LOH events occur in the genome.

Randomly from the yeast genome, we simulated control tracts resembling the LOH tracts in terms of tract lengths and locations with respect to single-nucleotide-polymorphism positions. We then extracted roughly 1,100 features such as base compositions, histone modifications, presence of tandem repeats etc. and train classifiers to distinguish control tracts and LOH tracts. We found interesting features of good predictive values. We also found that with the current repertoire of features, the prediction is generally better for spontaneous LOH events than UV-induced LOH events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an accurate history and assessment of behavioral symptoms that are also associated with frequent comorbid disorders, particularly posttraumatic stress disorder (PTSD) and depression. Military veterans from Iraq and Afghanistan with mild TBI (n = 30) with comorbid PTSD and depression and non-TBI participants from primary (n = 42) and confirmatory (n = 28) control groups were assessed with high angular resolution diffusion imaging (HARDI). White matter-specific registration followed by whole-brain voxelwise analysis of crossing fibers provided separate partial volume fractions reflecting the integrity of primary fibers and secondary (crossing) fibers. Loss of white matter integrity in primary fibers (P < 0.05; corrected) was associated with chronic mild TBI in a widely distributed pattern of major fiber bundles and smaller peripheral tracts including the corpus callosum (genu, body, and splenium), forceps minor, forceps major, superior and posterior corona radiata, internal capsule, superior longitudinal fasciculus, and others. Distributed loss of white matter integrity correlated with duration of loss of consciousness and most notably with "feeling dazed or confused," but not diagnosis of PTSD or depressive symptoms. This widespread spatial extent of white matter damage has typically been reported in moderate to severe TBI. The diffuse loss of white matter integrity appears consistent with systemic mechanisms of damage shared by blast- and impact-related mild TBI that involves a cascade of inflammatory and neurochemical events. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.

Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.

In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.

In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.

For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.

Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Finsler space is said to be geodesically reversible if each oriented geodesic can be reparametrized as a geodesic with the reverse orientation. A reversible Finsler space is geodesically reversible, but the converse need not be true. In this note, building on recent work of LeBrun and Mason, it is shown that a geodesically reversible Finsler metric of constant flag curvature on the 2-sphere is necessarily projectively flat. As a corollary, using a previous result of the author, it is shown that a reversible Finsler metric of constant flag curvature on the 2-sphere is necessarily a Riemannian metric of constant Gauss curvature, thus settling a long- standing problem in Finsler geometry.