3 resultados para Tracking and trailing.

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-throughput analysis of animal behavior requires software to analyze videos. Such software typically depends on the experiments' being performed in good lighting conditions, but this ideal is difficult or impossible to achieve for certain classes of experiments. Here, we describe techniques that allow long-duration positional tracking in difficult lighting conditions with strong shadows or recurring "on"/"off" changes in lighting. The latter condition will likely become increasingly common, e.g., for Drosophila due to the advent of red-shifted channel rhodopsins. The techniques enabled tracking with good accuracy in three types of experiments with difficult lighting conditions in our lab. Our technique handling shadows relies on single-animal tracking and on shadows' and flies' being accurately distinguishable by distance to the center of the arena (or a similar geometric rule); the other techniques should be broadly applicable. We implemented the techniques as extensions of the widely-used tracking software Ctrax; however, they are relatively simple, not specific to Drosophila, and could be added to other trackers as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. METHODS: Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. RESULTS: The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over 2 years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interactions with the technology were participant-initiated. CONCLUSION: The complexity and length of the technology-based randomized clinical trial created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the adaptive intervention design. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support adaptive intervention design in long-term, technology-based studies, as well as developing the interventions themselves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.

This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.

Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.

Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.