4 resultados para Topology preservation
em Duke University
Resumo:
The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.
Resumo:
We recently developed an approach for testing the accuracy of network inference algorithms by applying them to biologically realistic simulations with known network topology. Here, we seek to determine the degree to which the network topology and data sampling regime influence the ability of our Bayesian network inference algorithm, NETWORKINFERENCE, to recover gene regulatory networks. NETWORKINFERENCE performed well at recovering feedback loops and multiple targets of a regulator with small amounts of data, but required more data to recover multiple regulators of a gene. When collecting the same number of data samples at different intervals from the system, the best recovery was produced by sampling intervals long enough such that sampling covered propagation of regulation through the network but not so long such that intervals missed internal dynamics. These results further elucidate the possibilities and limitations of network inference based on biological data.
Resumo:
When the heart fails, there is often a constellation of biochemical alterations of the beta-adrenergic receptor (betaAR) signaling system, leading to the loss of cardiac inotropic reserve. betaAR down-regulation and functional uncoupling are mediated through enhanced activity of the betaAR kinase (betaARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of betaARK1 (betaARKct), that the desensitization and down-regulation of betaARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical betaAR abnormalities seen in human heart failure, delivery of the betaARKct transgene at the time of myocardial infarction prevents the rise in betaARK1 activity and expression and thereby maintains betaAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of betaAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of betaARK1 and preservation of myocardial betaAR function.
Resumo:
Highlights of Data Expedition: • Students explored daily observations of local climate data spanning the past 35 years. • Topological Data Analysis, or TDA for short, provides cutting-edge tools for studying the geometry of data in arbitrarily high dimensions. • Using TDA tools, students discovered intrinsic dynamical features of the data and learned how to quantify periodic phenomenon in a time-series. • Since nature invariably produces noisy data which rarely has exact periodicity, students also considered the theoretical basis of almost-periodicity and even invented and tested new mathematical definitions of almost-periodic functions. Summary The dataset we used for this data expedition comes from the Global Historical Climatology Network. “GHCN (Global Historical Climatology Network)-Daily is an integrated database of daily climate summaries from land surface stations across the globe.” Source: https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ We focused on the daily maximum and minimum temperatures from January 1, 1980 to April 1, 2015 collected from RDU International Airport. Through a guided series of exercises designed to be performed in Matlab, students explore these time-series, initially by direct visualization and basic statistical techniques. Then students are guided through a special sliding-window construction which transforms a time-series into a high-dimensional geometric curve. These high-dimensional curves can be visualized by projecting down to lower dimensions as in the figure below (Figure 1), however, our focus here was to use persistent homology to directly study the high-dimensional embedding. The shape of these curves has meaningful information but how one describes the “shape” of data depends on which scale the data is being considered. However, choosing the appropriate scale is rarely an obvious choice. Persistent homology overcomes this obstacle by allowing us to quantitatively study geometric features of the data across multiple-scales. Through this data expedition, students are introduced to numerically computing persistent homology using the rips collapse algorithm and interpreting the results. In the specific context of sliding-window constructions, 1-dimensional persistent homology can reveal the nature of periodic structure in the original data. I created a special technique to study how these high-dimensional sliding-window curves form loops in order to quantify the periodicity. Students are guided through this construction and learn how to visualize and interpret this information. Climate data is extremely complex (as anyone who has suffered from a bad weather prediction can attest) and numerous variables play a role in determining our daily weather and temperatures. This complexity coupled with imperfections of measuring devices results in very noisy data. This causes the annual seasonal periodicity to be far from exact. To this end, I have students explore existing theoretical notions of almost-periodicity and test it on the data. They find that some existing definitions are also inadequate in this context. Hence I challenged them to invent new mathematics by proposing and testing their own definition. These students rose to the challenge and suggested a number of creative definitions. While autocorrelation and spectral methods based on Fourier analysis are often used to explore periodicity, the construction here provides an alternative paradigm to quantify periodic structure in almost-periodic signals using tools from topological data analysis.