3 resultados para Time and space
em Duke University
Resumo:
“Globalizing the Sculptural Landscape of Isis and Sarapis Cults in Roman Greece,” asks questions of cross-cultural exchange and viewership of sculptural assemblages set up in sanctuaries to the Egyptian gods. Focusing on cognitive dissonance, cultural imagining, and manipulations of time and space, I theorize ancient globalization as a set of loosely related processes that shifted a community's connections with place. My case studies range from the 3rd century BCE to the 2nd century CE, including sanctuaries at Rhodes, Thessaloniki, Dion, Marathon, Gortyna, and Delos. At these sites, devotees combined mainstream Greco-Roman sculptures, Egyptian imports, and locally produced imitations of Egyptian artifacts. In the last case, local sculptors represented Egyptian subjects with Greco-Roman naturalistic styles, creating an exoticized visual ideal that had both local and global resonance. My dissertation argues that the sculptural assemblages set up in Egyptian sanctuaries allowed each community to construct complex narratives about the nature of the Egyptian gods. Further, these images participated in a form of globalization that motivated local communities to adopt foreign gods and reinterpret them to suit local needs.
I begin my dissertation by examining how Isis and Sarapis were represented in Greece. My first chapter focuses on single statues of Egyptian gods, describing their iconographies and stylistic tendencies through examples from Corinth and Gortyna. By comparing Greek examples with images of Sarapis, Isis, and Harpokrates from around the Mediterranean, I demonstrate that Greek communities relied on globally available visual tropes rather than creating site or region-specific interpretations. In the next section, I examine what other sources viewers drew upon to inform their experiences of Egyptian sculpture. In Chapter 3, I survey the textual evidence for Isiac cult practice in Greece as a way to reconstruct devotees’ expectations of sculptures in sanctuary contexts. At the core of this analysis are Apuleius’ Metamorphoses and Plutarch’s De Iside et Osiride, which offer a Greek perspective on the cult’s theology. These literary works rely on a tradition of aretalogical inscriptions—long hymns produced from roughly the late 4th century B.C.E. into the 4th century C.E. that describe the expansive syncretistic powers of Isis, Sarapis, and Harpokrates. This chapter argues that the textual evidence suggests that devotees may have expected their images to be especially miraculous and likely to intervene on their behalf, particularly when involved in ritual activity inside the sanctuary.
In the final two chapters, I consider sculptural programs and ritual activity in concert with sanctuary architecture. My fourth chapter focuses on sanctuaries where large amounts of sculpture were found in underground water crypts: Thessaloniki and Rhodes. These groups of statues can be connected to a particular sanctuary space, but their precise display contexts are not known. By reading these images together, I argue that local communities used these globally available images to construct new interpretations of these gods, ones that explored the complex intersections of Egyptian, Greek, and Roman identities in a globalized Mediterranean. My final chapter explores the Egyptian sanctuary at Marathon, a site where exceptional preservation allows us to study how viewers would have experienced images in architectural space. Using the Isiac visuality established in Chapter 3, I reconstruct the viewer's experience, arguing that the patron, Herodes Atticus, intended his viewer to inform his experience with the complex theology of Middle Platonism and prevailing elite attitudes about Roman imperialism.
Throughout my dissertation, I diverge from traditional approaches to culture change that center on the concepts of Romanization and identity. In order to access local experiences of globalization, I examine viewership on a micro-scale. I argue that viewers brought their concerns about culture change into dialogue with elements of cult, social status, art, and text to create new interpretations of Roman sculpture sensitive to the challenges of a highly connected Mediterranean world. In turn, these transcultural perspectives motivated Isiac devotees to create assemblages that combined elements from multiple cultures. These expansive attitudes also inspired Isiac devotees to commission exoticized images that brought together disparate cultures and styles in an eclectic manner that mirrored the haphazard way that travel brought change to the Mediterranean world. My dissertation thus offers a more theoretically rigorous way of modeling culture change in antiquity that recognizes local communities’ agency in producing their cultural landscapes, reconciling some of the problems of scale that have plagued earlier approaches to provincial Roman art.
These case studies demonstrate that cultural anxieties played a key role in how viewers experienced artistic imagery in the Hellenistic and Roman Mediterranean. This dissertation thus offers a new component in our understanding of ancient visuality, and, in turn, a better way to analyze how local communities dealt with the rise of connectivity and globalization.
Resumo:
Into the Bends of Time is a 40-minute work in seven movements for a large chamber orchestra with electronics, utilizing real-time computer-assisted processing of music performed by live musicians. The piece explores various combinations of interactive relationships between players and electronics, ranging from relatively basic processing effects to musical gestures achieved through stages of computer analysis, in which resulting sounds are crafted according to parameters of the incoming musical material. Additionally, some elements of interaction are multi-dimensional, in that they rely on the participation of two or more performers fulfilling distinct roles in the interactive process with the computer in order to generate musical material. Through processes of controlled randomness, several electronic effects induce elements of chance into their realization so that no two performances of this work are exactly alike. The piece gets its name from the notion that real-time computer-assisted processing, in which sound pressure waves are transduced into electrical energy, converted to digital data, artfully modified, converted back into electrical energy and transduced into sound waves, represents a “bending” of time.
The Bill Evans Trio featuring bassist Scott LaFaro and drummer Paul Motian is widely regarded as one of the most important and influential piano trios in the history of jazz, lauded for its unparalleled level of group interaction. Most analyses of Bill Evans’ recordings, however, focus on his playing alone and fail to take group interaction into account. This paper examines one performance in particular, of Victor Young’s “My Foolish Heart” as recorded in a live performance by the Bill Evans Trio in 1961. In Part One, I discuss Steve Larson’s theory of musical forces (expanded by Robert S. Hatten) and its applicability to jazz performance. I examine other recordings of ballads by this same trio in order to draw observations about normative ballad performance practice. I discuss meter and phrase structure and show how the relationship between the two is fixed in a formal structure of repeated choruses. I then develop a model of perpetual motion based on the musical forces inherent in this structure. In Part Two, I offer a full transcription and close analysis of “My Foolish Heart,” showing how elements of group interaction work with and against the musical forces inherent in the model of perpetual motion to achieve an unconventional, dynamic use of double-time. I explore the concept of a unified agential persona and discuss its role in imparting the song’s inherent rhetorical tension to the instrumental musical discourse.
Resumo:
A new modality for preventing HIV transmission is emerging in the form of topical microbicides. Some clinical trials have shown some promising results of these methods of protection while other trials have failed to show efficacy. Due to the relatively novel nature of microbicide drug transport, a rigorous, deterministic analysis of that transport can help improve the design of microbicide vehicles and understand results from clinical trials. This type of analysis can aid microbicide product design by helping understand and organize the determinants of drug transport and the potential efficacies of candidate microbicide products.
Microbicide drug transport is modeled as a diffusion process with convection and reaction effects in appropriate compartments. This is applied here to vaginal gels and rings and a rectal enema, all delivering the microbicide drug Tenofovir. Although the focus here is on Tenofovir, the methods established in this dissertation can readily be adapted to other drugs, given knowledge of their physical and chemical properties, such as the diffusion coefficient, partition coefficient, and reaction kinetics. Other dosage forms such as tablets and fiber meshes can also be modeled using the perspective and methods developed here.
The analyses here include convective details of intravaginal flows by both ambient fluid and spreading gels with different rheological properties and applied volumes. These are input to the overall conservation equations for drug mass transport in different compartments. The results are Tenofovir concentration distributions in time and space for a variety of microbicide products and conditions. The Tenofovir concentrations in the vaginal and rectal mucosal stroma are converted, via a coupled reaction equation, to concentrations of Tenofovir diphosphate, which is the active form of the drug that functions as a reverse transcriptase inhibitor against HIV. Key model outputs are related to concentrations measured in experimental pharmacokinetic (PK) studies, e.g. concentrations in biopsies and blood. A new measure of microbicide prophylactic functionality, the Percent Protected, is calculated. This is the time dependent volume of the entire stroma (and thus fraction of host cells therein) in which Tenofovir diphosphate concentrations equal or exceed a target prophylactic value, e.g. an EC50.
Results show the prophylactic potentials of the studied microbicide vehicles against HIV infections. Key design parameters for each are addressed in application of the models. For a vaginal gel, fast spreading at small volume is more effective than slower spreading at high volume. Vaginal rings are shown to be most effective if inserted and retained as close to the fornix as possible. Because of the long half-life of Tenofovir diphosphate, temporary removal of the vaginal ring (after achieving steady state) for up to 24h does not appreciably diminish Percent Protected. However, full steady state (for the entire stromal volume) is not achieved until several days after ring insertion. Delivery of Tenofovir to the rectal mucosa by an enema is dominated by surface area of coated mucosa and whether the interiors of rectal crypts are filled with the enema fluid. For the enema 100% Percent Protected is achieved much more rapidly than for vaginal products, primarily because of the much thinner epithelial layer of the mucosa. For example, 100% Percent Protected can be achieved with a one minute enema application, and 15 minute wait time.
Results of these models have good agreement with experimental pharmacokinetic data, in animals and clinical trials. They also improve upon traditional, empirical PK modeling, and this is illustrated here. Our deterministic approach can inform design of sampling in clinical trials by indicating time periods during which significant changes in drug concentrations occur in different compartments. More fundamentally, the work here helps delineate the determinants of microbicide drug delivery. This information can be the key to improved, rational design of microbicide products and their dosage regimens.