9 resultados para Tilted-time window model

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optical window model for the rodent dorsum was used to perform chronic and quantitative intravital microscopy and laser Doppler flowmetry of microvascular networks adjacent to functional and non-functional glucose sensors. The one-sided configuration afforded direct, real-time observation of the tissue response to bare (unmodified, smooth surface) sensors and sensors coated with porous poly-L-lactic acid (PLLA). Microvessel length density and red blood cell flux (blood perfusion) within 1 mm of the sensors were measured bi-weekly over 2 weeks. When non-functional sensors were fully implanted beneath the windows, the porous coated sensors had two-fold more vasculature and significantly higher blood perfusion than bare sensors on Day 14. When functional sensors were implanted percutaneously, as in clinical use, no differences in baseline current, neovascularization, or tissue perfusion were observed between bare and porous coated sensors. However, percutaneously implanted bare sensors had two-fold more vascularity than fully implanted bare sensors by Day 14, indicating the other factors, such as micromotion, might be stimulating angiogenesis. Despite increased angiogenesis adjacent to percutaneous sensors, modest sensor current attenuation occurred over 14 days, suggesting that factors other than angiogenesis may play a dominant role in determining sensor function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Singapore's population, as that of many other countries, is aging; this is likely to lead to an increase in eye diseases and the demand for eye care. Since ophthalmologist training is long and expensive, early planning is essential. This paper forecasts workforce and training requirements for Singapore up to the year 2040 under several plausible future scenarios. METHODS: The Singapore Eye Care Workforce Model was created as a continuous time compartment model with explicit workforce stocks using system dynamics. The model has three modules: prevalence of eye disease, demand, and workforce requirements. The model is used to simulate the prevalence of eye diseases, patient visits, and workforce requirements for the public sector under different scenarios in order to determine training requirements. RESULTS: Four scenarios were constructed. Under the baseline business-as-usual scenario, the required number of ophthalmologists is projected to increase by 117% from 2015 to 2040. Under the current policy scenario (assuming an increase of service uptake due to increased awareness, availability, and accessibility of eye care services), the increase will be 175%, while under the new model of care scenario (considering the additional effect of providing some services by non-ophthalmologists) the increase will only be 150%. The moderated workload scenario (assuming in addition a reduction of the clinical workload) projects an increase in the required number of ophthalmologists of 192% by 2040. Considering the uncertainties in the projected demand for eye care services, under the business-as-usual scenario, a residency intake of 8-22 residents per year is required, 17-21 under the current policy scenario, 14-18 under the new model of care scenario, and, under the moderated workload scenario, an intake of 18-23 residents per year is required. CONCLUSIONS: The results show that under all scenarios considered, Singapore's aging and growing population will result in an almost doubling of the number of Singaporeans with eye conditions, a significant increase in public sector eye care demand and, consequently, a greater requirement for ophthalmologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban problems have several features that make them inherently dynamic. Large transaction costs all but guarantee that homeowners will do their best to consider how a neighborhood might change before buying a house. Similarly, stores face large sunk costs when opening, and want to be sure that their investment will pay off in the long run. In line with those concerns, different areas of Economics have made recent advances in modeling those questions within a dynamic framework. This dissertation contributes to those efforts.

Chapter 2 discusses how to model an agent’s location decision when the agent must learn about an exogenous amenity that may be changing over time. The model is applied to estimating the marginal willingness to pay to avoid crime, in which agents are learning about the crime rate in a neighborhood, and the crime rate can change in predictable (Markovian) ways.

Chapters 3 and 4 concentrate on location decision problems when there are externalities between decision makers. Chapter 3 focuses on the decision of business owners to open a store, when its demand is a function of other nearby stores, either through competition, or through spillovers on foot traffic. It uses a dynamic model in continuous time to model agents’ decisions. A particular challenge is isolating the contribution of spillovers from the contribution of other unobserved neighborhood attributes that could also lead to agglomeration. A key contribution of this chapter is showing how we can use information on storefront ownership to help separately identify spillovers.

Finally, chapter 4 focuses on a class of models in which families prefer to live

close to similar neighbors. This chapter provides the first simulation of such a model in which agents are forward looking, and shows that this leads to more segregation than it would have been observed with myopic agents, which is the standard in this literature. The chapter also discusses several extensions of the model that can be used to investigate relevant questions such as the arrival of a large contingent high skilled tech workers in San Francisco, the immigration of hispanic families to several southern American cities, large changes in local amenities, such as the construction of magnet schools or metro stations, and the flight of wealthy residents from cities in the Rust belt, such as Detroit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To build a model that will predict the survival time for patients that were treated with stereotactic radiosurgery for brain metastases using support vector machine (SVM) regression.

Methods and Materials: This study utilized data from 481 patients, which were equally divided into training and validation datasets randomly. The SVM model used a Gaussian RBF function, along with various parameters, such as the size of the epsilon insensitive region and the cost parameter (C) that are used to control the amount of error tolerated by the model. The predictor variables for the SVM model consisted of the actual survival time of the patient, the number of brain metastases, the graded prognostic assessment (GPA) and Karnofsky Performance Scale (KPS) scores, prescription dose, and the largest planning target volume (PTV). The response of the model is the survival time of the patient. The resulting survival time predictions were analyzed against the actual survival times by single parameter classification and two-parameter classification. The predicted mean survival times within each classification were compared with the actual values to obtain the confidence interval associated with the model’s predictions. In addition to visualizing the data on plots using the means and error bars, the correlation coefficients between the actual and predicted means of the survival times were calculated during each step of the classification.

Results: The number of metastases and KPS scores, were consistently shown to be the strongest predictors in the single parameter classification, and were subsequently used as first classifiers in the two-parameter classification. When the survival times were analyzed with the number of metastases as the first classifier, the best correlation was obtained for patients with 3 metastases, while patients with 4 or 5 metastases had significantly worse results. When the KPS score was used as the first classifier, patients with a KPS score of 60 and 90/100 had similar strong correlation results. These mixed results are likely due to the limited data available for patients with more than 3 metastases or KPS scores of 60 or less.

Conclusions: The number of metastases and the KPS score both showed to be strong predictors of patient survival time. The model was less accurate for patients with more metastases and certain KPS scores due to the lack of training data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal-window chambers. By spatially multiplexing spectral information into a single-image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social-cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model of telescoping is proposed that assumes no systematic errors in dating. Rather, the overestimation of recent occurrences of events is based on the combination of three factors: (1) Retention is greater for recent events; (2) errors in dating, though unbiased, increase linearly with the time since the dated event; and (3) intrusions often occur from events outside the period being asked about, but such intrusions do not come from events that have not yet occurred. In Experiment 1, we found that recall for colloquia fell markedly over a 2-year interval, the magnitude of errors in psychologists' dating of the colloquia increased at a rate of .4 days per day of delay, and the direction of the dating error was toward the middle of the interval. In Experiment 2, the model used the retention function and dating errors from the first study to predict the distribution of the actual dates of colloquia recalled as being within a 5-month period. In Experiment 3, the findings of the first study were replicated with colloquia given by, instead of for, the subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI or EEG data, DDMs usually have complex formulations and thus can accommodate only a few regions, due to limitations in spatial resolution and/or temporal resolution of these imaging modalities. In contrast, we formulate our model in the context of ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much simpler DDM, allowing investigation of complex connections between many regions. To identify functionally segregated sub-networks, a form of biologically economical brain networks, we propose the Potts model for the DDM parameters. The neuronal states of brain components are represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood criterion that combines the state and observation equations. The Potts model is converted to the Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG dataset.